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Authors Ondřej Bojar, Ondřej Hübsch, Maria Nadejde, David Mareček, Roman Sudarikov,
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Executive Summary

The goal of WP2 Semantically Motivated MT is to improve the accuracy of statistical machine translation. We address the two
frequent error types in the first two tasks: T2.1 aimed at preserving semantic roles of verb complements and modifiers, and T2.2
aimed at correct handling of negation.

Two additional tasks complement these efforts in a more direct way: T2.3 aims at avoiding critical translation errors of phrase-
based (and hierarchical) models by removing translation units that are likely to introduce errors, and T2.4 aims to make MT
benefit from existing large-scale high-quality dictionaries developed by Lingea.

This deliverable 2.2 is devoted to the work on semantic role labelling and on core fidelity in year 2 of the project. We refer the
reader to report D2.1 for a description of the first year’s work. The final deliverable of the workpackage (D2.3) will cover the
results of the remaining tasks.

1 Task 2.1: Modelling Semantic Role Labelling in Machine Translation

Semantic roles specify the relationships between the verbs of a sentence and their arguments. For instance, in the sentence ‘John
likes Mary,’ the arguments ‘John’ and ‘Mary’ have different roles: John is the person who loves and Mary is the person who is
loved. These distinct roles are often given generalized labels like ‘agent’ (for the person or thing performing the action of the
verb) and ‘patient’ (for the person or thing to whom the action of the verb is directed). For a translation to faithfully convey the
meaning of a source text, it is crucial that the semantic roles of the source text are correctly mapped to the target language. For
instance, ‘John loves Mary’ can be correctly translated to the German ‘John liebt Mary,’ but if during translation the phrases
‘John’ and ‘Mary’ are reordered, then their semantic roles will be flipped.

Most machine translation models have no explicit concept of semantics, although there is now a small but growing body of
literature on modelling semantic roles in machine translation. To date, the majority of this work has focused on Chinese-English
translation (among other reasons, this partly reflects the availability of suitably annotated corpora and language processing tools
for both of those languages).

In the first year of the project, Task 2.1 was focused on shallow syntactic statistical MT models. At the start of the project,
this was the natural direction, since almost all pre-existing work on using semantic labels in MT was based on syntax-based
statistical approaches. During the second year, we made a transition from syntax-based statistical MT to neural MT (NMT).
This was motivated by the following observations and findings:

• The overall field of machine translation is rapidly undergoing a shift from statistical to neural MT on the basis of com-
pelling empirical results. For many language pairs and data sets, the translation quality of neural MT has surpassed that
of statistical MT (see, for example, the results of WMT16 (Bojar et al., 2016b)). Where neural MT hasn’t yet surpassed
statistical MT, it is rapidly gaining ground.

• Parallel work in the research-oriented QT21 project has shown superior results for neural MT over statistical MT in
three out of the four HimL language pairs (English-Polish was not tested). Encouragingly it has also demonstrated
improvements from the use of shallow syntactic and semantic labels. This is in contrast to statistical MT where (for the
HimL pairs) the use of syntax has generally harmed translation quality.

• Looking ahead to building final systems, neural MT is much more straightforward to combine with phrase-based MT (the
default model type in HimL) than syntax-based MT. This is due to the ability of neural MT to score arbitrary sentence
pairs making it simple to rescore phrase-based n-best lists with a neural MT model.

In this section, experiments in four settings of semantic role labelling (SRL) are explored. The first part is devoted to the use of
SRL coming from PropBank-like annotation in both syntax-based SMT (continuation of our work in year 1) as well as NMT. The
second part makes use of SRL labels coming from a slightly deeper t-layer style of analysis. Again, both traditional statistical
MT (here phrase-based MT) and neural MT are covered. Note that the SRL annotation is used only on the English side so it can
be used for all HimL language pairs. The t-layer experiments are limited to English-to-Czech.

In the last part of this section (Section 1.5), we describe our experiments with selectional preferences, a phenomenon very
closely related to semantic role labelling. While semantic roles are concerned with morphosyntactic forms expressing syntactic
dependencies, selectional preferences provide lexical support for this. By improving either or both, the core relations in the
translated sentence are more likely to be preserved.
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System Syntactic Semantic
l-m r-m l-m r-m

English-Chinese (Li et al) 80.7 85.6 70.9 73.5
English-German (reimplementation) 81.6 85.8 63.8 67.9

Table 1: Accuracy of the syntactic and semantic reordering models when tested on gold test sets. Results are
given for the leftmost (l-m) and rightmost (r-m) variants of the models (see Li et al. (2014) for a full de-
scription of the models). English-Chinese results are from Li et al. (2014) and English-German results are
from our reimplementation.

en-zh en-de en-ro
News Cochrane NHS24 Khresmoi Cochrane NHS24

Phrase-based 11.8 35.5 28.0 18.4 34.0 27.1
Hierarchical phrase-based 11.9 34.7 27.4 17.9 32.6 27.3

Table 2: Bleu scores for phrase-based and hierarchical phrase-based systems.

1.1 Statistical MT with PropBank Semantic Role Labels

As described in D2.1, we experimented in the first year with a number of approaches to incorporating SRL labels. A promising
technique was based on previous work by Li et al. (2013), in which the authors showed improvements for the Chinese-English
language pair. However, when applied to the HimL language pairs, our reimplementation was found to perform less well.
Whereas applying hard syntactic constraints (a prerequistite of Li et al.’s approach) was found to improve translation quality for
English-Chinese, the opposite was found for English-German and English-Romanian. For this reason, we subsequently adopted
the closely-related approach taken in the follow-up paper (Li et al., 2014). In brief, the basic idea is to extend a hierarchical
phrase-based model by adding independent syntactic and semantic reordering models based on word alignments. This has the
advantage that it eliminates the requirement for hard syntactic constraints. Although not fully implemented (due to the neural MT
switch), our partial implementation provides further evidence of the difficulty of semantic role reordering in English-German.

Implementing Li et al. (2014)’s model within the Moses toolkit requires four main steps: i) adding SRL annotation to training
data trees; ii) extracting reordering types and features from the training data; iii) learning the syntactic and semantic reordering
models; and iv) implementing a reordering feature function. The first step was implemented earlier in the project and required
no additional engineering effort. We implemented the second and third steps, using Vowpal Wabbit1 as the maximum-entropy
classifier, and tested the resulting reordering model. For English-German, we received similar results to those reported by Li
et al. (2014) for English-Chinese. Table 1 gives the accuracy of the syntactic and semantic reordering models when tested
on gold test sets. Interestingly, the accuracy of the semantic reordering model is lower for German than Chinese. A possible
interpretation is that prediction is made more difficult by the higher degree of semantic role permutation in English-German.
In the analysis of the work in year one, we observed Kendall-Tau distances of 0.79 for English-German and 0.84 for English-
Chinese (lower scores indicate a higher degree of reordering, see D2.1 for details).

The fourth implementation step is the most time consuming and has not yet been implemented. Based on the comparative
performance of syntactic versus neural MT, we instead focused our efforts on neural MT instead. Table 2 gives Bleu scores
for three language pairs, English-German and English-Romanian, plus English-Chinese (en-zh), which we used as a point of
comparison. For the two HimL language pairs, using a hierarchical phrase-based model has a negative impact on translation
quality overall.

1.2 Neural MT with PropBank Semantic Role Labels

For our neural MT experiments, we used the Nematus toolkit2 and a similar setup to that reported in Sennrich and Haddow
(2016). Thus, our system is an encoder-decoder with an attention mechanism. We use BPE (byte-pair encoding) to segment
words into subword units in a preprocessing step, The main difference in our setup is that we do not use back-translated mono-
lingual data. This is due to the need to keep computational requirements low enough for rapid experimentation during initial
development. However, we anticipate that final neural systems are likely to use back-translation since it has shown consistently
good results, for instance in Sennrich et al. (2016).

Prior to BPE segmentation, the English source-side data was annotated using the MatePlus tool3. This adds several layers of
1 http://hunch.net/ vw/
2 https://github.com/rsennrich/nematus
3 https://github.com/microth/mateplus
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en-cs en-de en-pl en-ro
cochrane nhs-24 cochrane nhs-24 cochrane nhs-24 cochrane nhs-24

baseline 30.41 21.93 33.90 28.52 17.08 20.68 34.71 26.86
SRL 30.20 21.88 34.20 27.85 17.12 19.94 34.28 27.32
all 30.30 23.10 33.50 28.51 16.85 21.34 34.71 27.00

Table 3: Neural MT results with surface form input only (‘baseline’ row) verbal-N and nominal-N features only
(‘SRL’ row), and all MatePlus features (‘all’ row).

annotation, from which we extract 10 factors:

• form - surface form of the token (e.g., maintaining)

• lemma - surface lemma (e.g., maintain)

• tag - part-of-speech tag (e.g., VBG)

• dep - dependency label (e.g., PMOD)

• verbal-N (for N=1,2,3) - role of word in frame for verbal predicate at depth N (where N=1 is closest to the root of the
dependency tree). These factors are PropBank labels (e.g. PRED, A0, AM-TMP).

• nominal-N (for N=1,2,3) - As verbal-N but for nominal predicates.

After BPE segmentation, we added a further BIOE tag indicating the position of this subword token within the enclosing word
(as in Sennrich and Haddow (2016)).

Due to the large number of experiments, we used a subset of the training data. Specifically, for each language pair, we sampled
subcorpora of 4M parallel sentence pairs from the HimL Corpus described in report D1.1. Since the constituent sub-corpora
are of wildly differing sizes (for instance, for English-Romanian, there are 80M sentence pairs in the OpenSubtitles subcorpus
and 740k sentence pairs in the EMEA subcorpus), we used a balanced sampling strategy that chose (without replacement) one
sentence pair from each sub-corpus in a round-robin.

Table 3 gives Bleu scores for the Cochrane and NHS24 test sets. Disappointingly, the results fail to show consistent improve-
ments. While we see a gain of 1 Bleu point for using all factors for English-Czech for the NHS24 test set, there is a (small)
loss on the Cochrane test. Across the language pairs, there are no obvious patterns, with Bleu scores sometimes increasing and
sometimes decreasing. This is in contrast with the findings in QT21 where consistent improvements were observed for German
and Romanian using WMT data. Since the work in QT21 is ongoing, and since QT21 is a research-focused project, we will
explore this more deeply in collaboration with that project.

1.3 Neural MT with PDT Tectogrammatical Semantic Role Labels

This section is devoted to the experiments with neural MT which use semantic roles labels as defined the in the tectogrammatical
layer, see the Prague Dependency Treebank (Hajič et al., 2006). The tectogrammatical layer is available for both Czech and
English, but we focused on the English side only.

We start by briefly introducing the exact data used in these experiments (Section 1.3.1). Note that the same data is then used
also in English-to-Czech phrase-based experiments (Section 1.4).

1.3.1 Data Selection and Annotation

Experiments with semantic role labelling require computationally expensive processing of the data and the informed models
are in general larger and more difficult to handle. For that reason, we carry out our experiments with only a small subset of all
available data. However, we select a subset that is most relevant for our domain, as described in Deliverable 1.1.

English-to-Czech experiments with modeling SRL were based on the following subcorpora, all extracted from CzEng 1.6 (Bojar
et al., 2016a):

• CzEngMed – medical section of CzEng 1.6, 1.5 million sentences

• CzEngTop1 – top 1% from CzEng 1.6 scored using XenC data selection tool described in D1.1 with CzEngMed as
domain-specific data, 1 million sentences
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t-tree
zone=en

Scotland
LOC n:in+X
in Scotland

18,000
RSTR n:more_than+X
more than 18,000

old
RSTR adj:attr
older

people
PAT n:subj
people

admit.enunc
PRED v:fin
, are admitted

hospital
PAT n:to+X
to hospital

fall
TWHEN n:after+X
after a fall

each
RSTR n:attr
each

year
TWHEN n:adv
year

Figure 1: Tectogrammatical representation of sentence “In Scotland, more than 18,000 older people are admitted to hospital after a fall
each year”. The SRL factors we extract are functors (in black in the second line at each tree node) and formemes (in purple
in the second line). The valframe values are not shown, however they are only identifiers pointing to the valency lexicon.

• CzEngTop5 – top 5% from CzEng 1.6 scored using XenC with CzEngMed as domain-specific data, 4.5 million sentences

The corpora were automatically parsed up to the deep syntactic representation (tectogrammatical layer of Prague Dependency
Treebank (Hajič et al., 2006)) using the Treex toolkit 4. One example of automatically analyzed sentence is in Figure 1.

We extracted the following factors from the tectogrammatical representation:

• form - surface form of the token

• lemma - surface lemma

• tag - part-of-speech tag

• functor - represents the semantic value of a syntactic dependency relation; it expresses the function of an individual
modification in the sentence. Examples: ACT (actor), PAT (patient), ADDR (addressee), LOC (location), DIR3 (direction
to), TWHEN (temporal), ...

• formeme - string representation of selected morpho-syntactic features of the content word and selected auxiliary words
that belong to the content word. Examples: adj:attr (attributive adjective), n:obj (nominal object), na:v+4 (noun in ac-
cusative with preposition na), ...

• valframe - valency frame of verbs; pointer to the valency lexicon

• functor-at-verbs - functor of verbs only

• formeme-at-verbs - formeme of verbs only

• functor-at-deps - functor of words depending on verbs

• formeme-at-deps - formeme of words depending on verbs

The semantic factors are defined only for content words, some of them only on verbs or their dependents. In case the factor is
not defined for a particular token, it gets the default value “_”. Therefore, e.g. the function words (prepositions, auxiliary verbs,
determiners, etc.) have only the basic factors (form, lemma, and tag) filled.

Note that not all the factors are used in all our experiments, see the details below.

1.3.2 Experiments with English-to-Czech NMT

We used Nematus5 NMT tool on CzEngMedical corpus. We trained two translation models, one without SRL using only stc,
lemma, and tag factors and one with additional SRL factors formeme, valframe, and functor. Both models use the same total
dimension of word vector 500, distributed across factors as [380, 110, 10] and [360, 100, 10, 10, 10, 10] respectively.

4 http://ufal.mff.cuni.cz/treex
5 https://github.com/rsennrich/nematus
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Source-side factors BLEU after 42000 iterations
stc+lemma+tag+formeme+valframe+functor 17.23
stc+lemma+tag 16.82

Table 4: Nematus results for English-to-Czech

Table 4 provides the results of this experiment. The setup with access to the SRL information (formeme, functor and the valency
frame) gives better results, allowing us to conclude that target-side SRL information is likely to help. It is however important to
say that the overall translation quality of that system is still worse than year 2 HimL system, the complex hybrid of deep-syntactic
transfer, phrase-based MT and the final automatic correction of grammatical errors.

1.4 Experiments with English-to-Czech SMT

For SMT-based experiments we used Moses SMT system. The basic configuration is derived from the Chimera system that
combines standard phrase phrase table coming from a parallel corpus with a synthetic phrase table produced by a transfer-based
system (TectoMT). The common settings for all the experiments are the following:

• Phrase table source-side factors are true-cased word form for baseline adding formeme/valframe/functor for different
models.

• Phrase table target-side factors are true-cased word form, lemma, and morphological tag in all setups.

• Three language models are applied to true-cased word forms, lemmas, and morphological tags, resp.

• The phrase tables are interpolated using MERT on HimL development corpus.

• Final evaluation was performed using HimL test corpus.

Table 5 shows the different setups of phrase tables, that were used in the experiments.

System Phrase Table 1 Phrase Table 2 Phrase Table/VowpalWabbit Model 3
Baseline CzEngMed (stc) TectoMT (stc) -
Run 1 CzEngMed (stc+formeme) TectoMT (stc+formeme) -
Run 2 CzEngMed (stc+functor) TectoMT (stc+functor) -
Run 3 CzEngMed (stc+valframe) TectoMT (stc+valframe) -
Run 4 CzEngMed (stc) TectoMT (stc) CzEngMed (stc+formeme)
Run 5 CzEngMed (stc) TectoMT (stc) CzEngMed (stc+functor)
Run 6 CzEngMed (stc) TectoMT (stc) CzEngMed (stc+valframe)
Run 7 CzEngMed (stc) TectoMT (stc) VowpalWabbit CzEngMed (stc+valframe)
Run 8 CzEngMed (stc) TectoMT (stc) VowpalWabbit CzEngTop5 (stc+valframe)
Run 9 CzEngMed (stc) TectoMT (stc) VowpalWabbit CzEngMed (RICHER)
Run 10 CzEngMed (stc) TectoMT (stc) VowpalWabbit CzEngMed (RICHER+valframe)
Run 11 CzEngTop5 (stc) TectoMT (stc) VowpalWabbit CzEngTop5 (RICHER)
Run 12 CzEngTop5 (stc) TectoMT (stc) VowpalWabbit CzEngTop5 (RICHER+valframe)

Table 5: English-to-Czech SMT phrase tables with source side factors.

Baseline uses just the two phrase tables. Runs 1–3 enrich the source side of the phrases table with one factor carrying one of
the variants of the SRL information: formeme, functor or valency frame. In these runs, both the corpus and the TectoMT tables
are enriched. Runs 4–6 enrich with SRL only the corpus table and more importantly, add this enriched table as a third option,
allowing the model to resort to less sparse (but also less informative) baseline tables.

Runs 7 and 8 do not use the third phrase table with semantic factors, but instead rely upon a discriminative model (Tamchyna
and Bojar, 2015) that scores phrase translation candidates based on the source factors of form and valency frame and the target
factors of form, lemma, and morphological tag.

Finally, Runs 9–12 (labelled “RICHER”) use a richer feature set in VowpalWabbit: not only the true-cased word form (stc) but
also lemma and morphological tag. The runs differ in training data size (smaller CzEngMed or larger CzEngTop5) and use or
do not use the valframe factor.
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System BLEU Avg. BLEU
Baseline 24.34 [23.36, 25.32] 24.3
Run 1 23.93 [22.98, 24.96] -
Run 2 23.45 [22.48, 24.43] -
Run 3 24.13 [23.15, 25.14] -
Run 4 24.42 [23.41, 25.48] 24.3
Run 5 24.29 [23.28, 25.26] 24.3
Run 6 24.39 [23.39, 25.46] 24.2
Run 7 24.38 [23.41, 25.45] 24.6
Run 8 24.64 [23.54, 25.74] 24.8
Run 9 24.45 [23.41, 25.51] 24.7
Run 10 24.68 [23.62, 25.73] 24.8
Run 11 24.57 [23.60, 25.61] 25.1
Run 12 24.88 [23.86, 25.99] 25.0

Table 6: Results of English-to-Czech translation with source-side SRL information. The first column reports BLEU
for a single run with confidence intervals established by bootstrapping sentences from the test set. The
second column reports the average BLEU of 4 different MERT runs.

The results show no improvement when the SRL information is used only to enrich phrase table entries, regardless the particular
variant of the information (formeme/functor/valframe) and also regardless if all tables are enriched or if the enriched table is
added just as an additional option. On the other hand, adding the discriminative model (Run 7) improves the results on average
by 0.3 BLEU. We are able to further improve this result by training on more data (Run 8), adding 0.5 BLEU to the baseline.

Runs 9–12 explore richer source-side features (stc+lemma+tag) and show, that the same improvement can be achieved using
smaller training data with richer semantic information for discriminative model. The highest average BLEU is achieved in Run
11 by using larger amount of training data with richer source-side features in the discriminative model. It is worth noting that
Runs 9–10 and Runs 11–12 do not significantly differ from each other, so in this richer setting, SRL information (in the form of
t-layer valency frame) brings no further improvement, with p-value 0.17 and 0.52, resp. The significance testing was performed
using MultEval (Clark et al., 2011).

To conclude, we were able to improve translation quality from English to Czech by adding semantic role information derived
from the tectogrammatical annotation. This additional information has to be integrated using a discriminative model, not simply
to augment source-side factors. Similar improvements are however achieved with the discriminative model alone, relying on
morphological features only.

1.5 Selectional Preferences Model for String-to-tree SMT

Li et al. (2013) proposed to improve translation of predicate-argument structures by modeling reordering and deletion of se-
mantic roles. However, the proposed models do not encode information about the lexical semantic affinities between target
predicates and their argument fillers. Selectional preferences describe such semantic affinities. For example, the verb “drinks”
has a strong preference for arguments in the conceptual class of “liquids”. Therefore the word “wine” can be disambiguated
when it appears in relation to the verb “drinks”.

As part of the HimL project, Nadejde et al. (2016a) explored whether modeling selectional preferences is useful for translating
ambiguous predicates and arguments. The authors propose a selectional preference feature for string-to-tree statistical machine
translation based on the information theoretic measure of Resnik (1996). The feature models selectional preferences of verbs
for their core and prepositional arguments as well as selectional preferences of nouns for their prepositional arguments. It also
uses unsupervised clusters to generalize over seen arguments.

In Table 7 we present the main results of the paper for the German→English language pair. The baseline string-to-tree system
trained on WMT data is compared with two augmented string-to-tree systems: one with the Selectional Preferences feature and
one with a RDLM feature. The RDLM–Pw (Sennrich, 2015) is a feed-forward neural network which predicts the head word of
a syntactic dependent conditioned on a large syntactic context which includes ancestors and siblings. The HWCM metric (Liu
and Gildea, 2005) is an f-score over syntactic n-grams which captures the improvement in translation quality for long-distance
dependencies. The results on the WMT newstest2013, 2014 and 2015 showed that neither of the features improves automatic
evaluation metrics. After further analysis the authors concluded that mistranslated verbs are negatively impacting these features.
The authors have therefore addressed the problem of mistranslated verbs with a Neural Verb Lexicon Model (Nadejde et al.,
2016b) as part of the more research oriented European project, QT21.

While this pilot study was conducted on the German→English language pair, this method is not language specific. Therefore
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we can apply it to any target language for which a syntactic parser is available. A future direction could be to combine the
Selectional Preferences model and Neural Verb Lexicon model for re-ranking the output of either phrase-based MT or NMT. In
the case of NMT, these models might also help to resolve word sense disambiguation errors.

System BLEU HWCM
Baseline 26.45 24.47
+ SelPref 26.48+.03 24.54+.07

+ RDLM–Pw (1, 0, 0) 26.35−.10 24.75+.28

Table 7: Results for string-to-tree systems with Selectional Preferences (SelPref) and RDLM features on the WMT
newstest2013, 2014 and 2015. The number of clusters used with SelPref is 500. The triples in paren-
thesis indicate the context size for ancestors, left siblings and right siblings respectively. The RDLM
configuration (1, 0, 0) captures similar syntactic context as the selectional preference feature.

2 Task 2.3: Improving Core Fidelity of Shallow Models

The goal of Task 2.3 is to make sure that the verity of standard shallow models such as phrase-based translation is not degraded
by individual phrase table entries. In the ideal case, every phrase entry in the phrase table would be correct and errors could get
introduced only at phrase boundaries. More information can be found in Deliverable 2.1.

In our analysis carried out in months 1-9 and reported in the Interim progress report, we established that there are fewer situations
where such phrase-local checks make sense compared to our expectations when writing the project proposal. We thus focused
on the most promising type of errors, negation flip.

Some of the possible approaches to avoid a negation flip are:

1. Translation to a simplified target language (without double negative) (details proposed in Section 2.1 below)

2. Refinement of word-alignments in the corpus (experiments described in previous D2.1, brief summary here in Section 2.2)

3. Filtering phrases that flip negation from the phrase table (experiments described in Section 2.3 below)

4. Scoring phrases with an additional score (Section 2.4)

It is also possible to extend the scope back beyond negation flip and devise an additional score for phrases in the phrase table
that would reflect some bilingual “similarity”. This approach was presented in Zhang et al. (2016) and we describe our attempt
to apply it for English-to-Czech medical data in Section 2.5.

Parts of this section were previously reported in the non-public Deliverable 7.4.

2.1 Translation to a Simplified Target Language without Double Negation

Instead of a English-to-Czech translation, we could translate from English to a “simplified” version of Czech that doesn’t contain
double negative and then change some forms to negative again. The translation would be dependent on the ability to properly
convert to and from the intermediate form of the target language. The dependence of the method on the particular language is
the main reason why we decided not to pursue this avenue.

2.2 Refinement of Alignments

To avoid negation flip, we can look for pairs or larger sets of words that jointly express a (single) negation in the target language.
If all these words are linked with word-alignment links, the phrase extraction mechanism cannot break them into separate phrase
pairs. However, the alignment methods often ignore the polarity of the words. This is particularly likely e.g. for Czech, where
the alignment is based on lemmas and lemmas do not express word polarity. The alignment can be artificially augmented by links
connecting all words belonging to one negation occurrence, or, as a simpler proxy, negation flag can be preserved on lemmas.
We already did some experiments in this direction in D2.1 and we decided not to continue with them for this deliverable.
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Czech German Polish Romanian
Sentence pairs 52.6 M 9.1 M 57.9 M 84.0 M
Words (English) 638 M 179 M 556 M 727 M
Words (the other language) 544 M 167 M 447 M 689 M
Extracted mistranslated word pairs 1279 275 582 612
Phrase pairs (filtered to development set) 29.1M 84.8M 2.4M 27.6M
Number of affected phrase pairs 3406 2817 801 2089

Table 8: Parallel corpus sizes and extracted mistranslated phrase pairs.

2.3 Filtering Phrases that Flip Negation

In our first experiments for English-to-Czech, we detected phrases with likely negation flip by checking the presence of the
English word “not” but absence of any Czech word with marked morphological negation. Removing such phrase pairs increased
the BLEU score slightly (23.29→ 23.36) and this small gain was also confirmed in a manual check.

This implementation was clearly limited: it relied on the availability of morphological analysis (which recognizes negation)
of the target language and it was unable to identify phrase pairs where the opposition in the meaning is not expressed by a
morpheme but rather lexically (e.g. “cheap” vs. “expensive”). We thus designed a method that employs knowledge of opposite
words in the source language only (English in our case), e.g. by consulting a lexical database like Wordnet6, or by using
simple morphological rules, such as adding the prefix “un-” or “in-”. A word-aligned corpus to any other target language is
then sufficient to extract wrong word pairs, i.e. pairs of words that are related to each other but express the opposite meaning.
Following our example, the good translation pairs are “cheap” = “levný” and “expensive” = “drahý” while the crossed pairs
“cheap” , “drahý” and “expensive” , “levný” need to be avoided in the phrase table. The method is based on the observation
that current word-alignment methods are likely to ignore the polarity of the word, so they will align the good pairs as well as the
bad pairs, but the polarity of individual words will be preserved in the training sentence pairs more often than flipped. Statistical
measures like pointwise mutual information will be thus stronger for the good pairs than for the bad pairs.

We implemented this method and employed it for all HimL languages, relying on the mentioned English Wordnet and prefixation
rules. Random examples of the extracted word pairs are given in Figure 2. We see that a large majority of the extracted pairs
are indeed mistranslations and most often true antonyms. The automatic extraction is controlled by several thresholds. We
experimentally fine-tuned these for our English-Czech data, using a small manually constructed list of wrong pairs. More
permissive thresholds lead already to a decrease in precision. We then applied the same thresholds to other languages. We see in
Table 8 that the number of extracted word pairs is very low, and even lower for languages other than Czech, due to the different
linguistic (esp. morphological) properties and corpora sizes and repetitiveness.

The small number of extracted mistranslated pairs leads to a very small number of phrases removed from the phrase table, which
in turn leads to negligible or no effect at all at translation time.

Surprisingly, when we used the filtered phrase table for model optimization, the resulting performance was substantially worse
(BLEU of 23.74 instead of 24.16); again with no difference if the test set is then translated with the filtered or non-filtered phrase
table. This result suggests that it might be actually possible to improve translation quality using the “bad pairs” removed in the
core fidelity filtering.

In the following section, we describe our experiments in this direction, augmenting (as opposed to filtering) the phrase table
with several novel scores in an attempt to strike the right balance between removing and keeping suspicious phrase pairs.

2.4 Scoring Phrases in the Phrase Table with Additional Scores

This section describes our experiments carried out towards the end of Task 2.3. The goal was to compare filtering of the phrase
table with a potentially less harmful method: adding a score or some feature indicating whether a phrase pair is likely to flip a
negation. We briefly describe the experiments in the following subsections. All of the experiments use the same set of forbidden
words that was described in 2.3.

2.4.1 Indicator 0.5 / 0.8

The intention is to indicate that we think some phrases might have a negation flip problem. This is the most straightforward
softening of the hard filtration described in Section 2.3. Instead of strictly removing such a suspicious entry, we mark it with a
score of 0.5 (meaning that there is 50% chance that this entry is wrong). Otherwise, we add 0.8 indicating that we believe the

6 http://wordnetweb.princeton.edu/perl/webwn
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English Czech Gloss
long zkráceně short
eastern západní western
∼ liability majetek property
∼ pull odvézt carry away

night svítání dawn
× pull netlačit not-push
∼ senior maturit’ák graduation ball
× hit neminout not-miss

easy rychle fast
top dole down

English German Gloss
∼ surgical medizinisch medical

insufficient ausreichen suffice
∼ indoor Schwimmbad (indoor) swimming pool
∼ employ einsetzen deploy

insufficient reichen suffice
unsaturated sättigen saturate
father Mutter mother
∼ female Genitale genital
∼ employ benutzen use, deploy
× yes sicherlich sure

Figure 2: Random sample from 1279 English-Czech and 275 English-German automatically extracted mistranslated word pairs. We
see that for instance for Czech, 2 of these sample 10 entries are wrong (they do not flip the negation, marked with “×”) and 3
other entries are not exactly opposite terms (marked “∼”) but they neverthless distort the meaning so they should be removed
from the phrase table.

pair should be correct. We don’t add 1 because the weight for this feature in the log-linear model would then be completely
ignored for these phrases.

2.4.2 Bucketing

We noticed that our filtering is more reliable for shorter phrases because longer phrases are more likely to contain further words
of the negation, correctly preserving polarity of the whole phrase. We thus introduce separate indicators for different lengths of
phrases.

A phrase entry belongs to a bucket described by an interval when the length of both the source and target sides belongs to that
interval. For a given phrase entry, the indicator value for irrelevant buckets (the buckets that this entry doesn’t belong to) is set
to 1 which effectively causes that this value is ignored. The value of the feature for the relevant bucket is set in the same way as
in Section 2.4.1. In one experiment, we also try to combine both the bucketed and the comprehensive indicators.

2.4.3 Number of wrong word pairs

To reflect the fact that phrase pairs differ in the number of suspicious word pairs, we test a very simple feature: for every phrase
pair we add the number of source-target word pairs that were in the list of forbidden word pairs. More precisely, we add the
exponential of that value, to make the feature behave as a counter in the log-linear model.

2.4.4 Estimating probability

Our last considered feature builds upon the observation that more suspicious word pairs in a phrase indicate that the phrase is
complex and difficult to categorize, rather than the phrase would be more clearly wrong.

For languages like Czech that use a double negative, this reflects that property in some way: a lot of frequent cooccurrences of
forbidden words might actually make the phrase pair correct (“nikdy nechci nic” (lit: never do-not-want nothing) and “vždycky
chci něco” (always want something) are semantic equivalents while “nikdy”/“vždycky”, “nechci”/“chci” and “nic”/“něco” are
all pairs of antonyms).

The score is set as follows: For every phrase without any forbidden source-target word pair, we set the score to 0.99. For other
phrases, we count the number c of forbidden source-target word pairs among all word pairs. Then we set min(0.99, c/100) as
the score for this entry.

The results for all considered scorings of phrase pairs are listed below.

2.5 Semantic Similarity Score Using Neural Networks

Zhang et al. (2016) propose a method that uses bidimensional attention based recursive autoencoder (BattRAE) to get bilingual
phrase representations. BattRAE aims to embed phrases into a vector space where all phrases with a similar meaning are close to
one another according to some measure. Then they use a bilinear neural model to measure bilingual semantic similarity and use
the calculated score as a feature in an existing SMT model. The results seem very promising: a significant BLEU improvement
on both MT06 (31.55→33.19) and MT08 (23.66→25.29) test data for the Chinese-English translation task.
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CzMed1 CzMed2 Y2CZ Y2DE Y2PL Y2RO
Baseline 20.93 20.88 22.17 24.83 19.03 26.14
Table filtering 2.3 20.84 20.88 22.09 25.24 18.67 25.77
Indicator 2.4.1 20.97 20.89 22.18 25.41 18.67 26.09
Buckets 2.4.2 (2, 3, 5, rest) 20.83 – – – – –
Buckets 2.4.2 (2, 3, 5, rest + 2.4.1) 20.62 – – – – –
Buckets 2.4.2 (≤ 4 and rest) – 21.17 22.06 DB 19.02 25.39
Number of wrong pairs 2.4.3 – 20.86 – – – –
Estimated probability 2.4.4 – 20.99 22.21 25.06 18.71 25.95
BattRAE 2.5 20.95 – 22.09 – – –

Table 9: Experimental results of core fidelity checking for English-to-Czech using both hard and soft methods of
phrase table filtering. Improvements over the baseline in bold.

Such a semantic measure could help our task of core fidelity checking in a more general way than the negation flip examined
above.

The sources are publicly available at https://github.com/DeepLearnXMU/BattRAE and one needs to provide examples of good
and bad phrases to train the model. We followed the technique of the authors: We used force-decoded phrases from our baseline
translation to generate positive samples for the test data. BattRAE expects to receive all positive samples complemented with
a negative sample. We generated negative samples by replacing every word in the positive sample by a random word from the
same language. Initial word embeddings were trained on a big bilingual corpus using word2vec.

We tried to replicate the results of Zhang et al. (2016) on our Czech medical corpus (1M sentences) but there wasn’t any
improvement on the HimL test set: the results were worse than baseline in multiple runs. This failure might be attributed to
overtraining or bad configuration of the BattRAE toolkit but more investigation would be needed.

2.6 Results

Table 9 summarizes our results. Not all possible setup combinations were performed due to time constraints.

The first two columns (CzMed1 and CzMed2) are based on our smaller Czech medical corpus (around 1M sentences) using two
different lists of forbidden words. When we used the method from 2.3 on that corpus using our finetuned thresholds, we got just
71 mistranslated pairs. This corresponds to column CzMed2. We also tried more permissive thresholds, yielding 1226 word
pairs with lower quality (column CzMed1). Altogether, neither option makes any significant difference for any of the filtering
or scoring methods: all the results differ only slightly and such a small difference can be easily caused just by the randomness
of model optimization (MERT).

The remaining four columns of Table 9 cover all HimL languages, trying to apply core fidelity checks for the respective year 2
systems. As before, the results are rather inconclusive, although some improvements over the baseline were obtained (and in the
case of German by up to 0.6).

The preliminary experiments with BattRAE failed to reproduce the reported improvements and it is not yet clear if the main
reason is the difference of languages, the domain, or possibly some technical error in the application of the provided toolkit.

Conclusion

In Tasks 2.1 and 2.3, we have carried out a number of experiments in search for methods that improve semantic correctness of
machine translation in the medical domain. We highlight the more promising results here.

Experiments in Task 2.1 make use of semantic role labels on the source side (English). Our experiments span from traditional
statistical approaches (both phrase-based and syntax-based) to the recent neural machine translation. We were able to improve
translation quality with semantic role labels for English-to-Czech (neural MT as well as phrase-based MT) with semantic role
labels derived from the tectogrammatical layer of annotation. Similar improvements are however achieved with a discriminative
model using source morphology only, with no further benefit from semantic roles. For other HimL languages, our experi-
ments relied on PropBank-style labels and the results were inconclusive: the additional linguistic annotation is helpful for some
languages and some sub-domains (Cochrane vs. NHS-24).

In Task 2.3 we focused mainly on prevention of negation flip and our initial experiments filtered out phrases based on lists of
forbidden word pairs. The forbidden word pairs are extracted automatically from parallel corpora but rely on manual optimiza-
tion of extraction thresholds. Unfortunately, there is not a clear balance between the precision and recall of forbidden word pair
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identification to reach an improvement in BLEU after all phrases with forbidden word pairs are removed. We thus experimented
with a few additional approaches to utilize the lists of forbidden word pairs and also with a completely different approach to
identifying bad phrase pairs based on recursive autoencoders. The results show that the BLEU score improved slightly for
Czech and German using our lists of forbidden words and some of the variants of soft filtering. While the BattRAE method
seems promising from a theoretical view, we could not reproduce the original results in our setting.

No further work on semantic role labels and core fidelity of MT is planned within the project HimL, but as mentioned, we are
in close touch with the research project QT21 which provides one more year for these directions. In case QT21 comes up with
methods that significantly improve phrase-based MT, we are ready to incorporate these findings into HimL systems. We are
however expecting that more scientific attention will now be given to neural MT. As of now, it is still unclear whether it will be
possible to deploy neural MT for HimL production systems. We will discuss this in WP4.
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