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EC project officer Martina Eydner
The Partners in The University of Edinburgh (UEDIN), United Kingdom
HimL are: Univerzita Karlova V Praze (CUNI), Czech Republic

Ludwig-Maximilians-Universitaet Muenchen (LMU-MUENCHEN), Germany
Lingea SRO (LINGEA), Czech Republic
NHS 24 (Scotland) (NHS24), United Kingdom
Cochrane (COCHRANE), United Kingdom

For copies or reports, updates on project activities and other HimL-related information, contact:

Barry Haddow bhaddow@staffmail.ed.ac.uk
University of Edinburgh Phone: +44 (0) 131 651 3173
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Executive Summary

The goal of WP2 Semantically Motivated MT is to improve the accuracy of statistical machine translation. We address the two
frequent error types in the first two tasks: T2.1 aimed at preserving semantic roles of verb complements and modifiers, and T2.2
aimed at correct handling of negation.

Two additional tasks complement these efforts in a more direct way: T2.3 aims at avoiding critical translation errors of phrase-
based (and hierarchical) model by removing translation units that are likely to introduce erros, and T2.4 will try to make MT
benefit from existing large-scale high-quality dictionaries developed by Lingea.

The status of the tasks at the end of M12 is summarized in the following table:

Task Months Status
2.1: Modelling Semantic Role Labelling in MT 1–24 as planned

2.2: Enforcing Negation through Shallow Semantics 13–26 started earlier

2.3: Improving Core Fidelity of Shallow Models 1–24 as planned

2.4: Employing Dictionaries 13–36 not started yet

Details on the progress and experiments in the individual tasks are provided in the sections below.

1 Task 2.1: Modelling Semantic Role Labelling in Machine Translation

Semantic roles specify the relationships between the verbs of a sentence and their arguments. For instance, in the sentence ‘John
likes Mary,’ the arguments ‘John’ and ‘Mary’ have different roles: John is the person who loves and Mary is the person who is
loved. These distinct roles are often given generalized labels like ‘agent’ (for the person or thing performing the action of the
verb) and ‘patient’ (for the person or thing to whom the action of the verb is directed). For a translation to faithfully convey the
meaning of a source text, it is crucial that the semantic roles of the source text are correctly mapped to the target language. For
instance, ‘John loves Mary’ can be correctly translated to the German ‘John liebt Mary,’ but if during translation the phrases
‘John’ and ‘Mary’ are reordered, then their semantic roles will be flipped. Since most arguments are translated independently,
the only defence against unwanted changes of meaning are the reordering model and the n-gram language model, both of which
are somewhat limited with respect to semantics. Unsurprisingly, changes in meaning are all too common in the output of real
translation systems.

Most statistical machine translation models have no explicit concept of semantics, although there is now a small but growing
body of literature on modelling semantic roles in machine translation. To date, the majority of this work has focussed on
Chinese-English translation (among other reasons, this partly reflects the availability of suitably annotated corpora and language
processing tools for both of those languages). In this project, our primary approach to modelling semantic roles builds on
the work of Li et al. (2013) who introduce an predicate-argument structure model. Their model is language-independent and
requires only source-side semantic annotation. As a result, it can be readily applied to the HimL language pairs. In the following
section, we will describe Li et al. (2013)’s approach, our (partial) reimplementation, and our preliminary results.

A prerequisite for the implementation of Li et al. (2013)’s model is the extension of the Moses toolkit to include support for
the representation and use of semantic roles in the translation pipeline. A happy side effect of this engineering work is that
it opens up the toolkit for the implementation of alternative approaches to modelling semantic roles. Since it is not clear that
one approach will be optimal for all HimL language pairs, it is important that there is scope for exploration and comparison of
alternatives. We will briefly discuss some of these alternative approaches, including that of Bazrafshan and Gildea (2013), for
which we also have preliminary results.

1.1 PropBank-style Semantic Role Labelling

The development of automatic semantic role labellers requires the provision of manually annotated training data. This data is
expensive to produce and consequently only a few such data sources exist. These include the annotation efforts of PropBank
(for English and Chinese), FrameNet (for English) and Abstract Meaning Representation (for English), each of which uses a
different role set (with different linguistic underpinnings). Czech is also very well supported with linguistic resources, cf. Prague
treebanks (Hajič et al., 2012; Hajič et al., 2006) and valency dictionaries (Lopatková et al., 2006; Urešová et al., 2016). We
expect some resources to be available also for German but less so for Polish and Romanian. Although Li et al. (2013)’s model
is somewhat neutral with regard to the role set, in experiments they use PropBank and so we follow them in doing so here.

PropBank, like most modern role sets, is defined on a verb-by-verb basis. Each distinct sense of a verb has an associated
frameset, which specifies the number of possible arguments of a verb and their individual roles. As an example, Figure 1 gives

— 5 —



HimL D2.1: Initial report on employing semantic role labelling and fidelity checking in machine translation

Figure 1: The PropBank frameset for the verb ‘open’ with the sense ‘cause to open’.

Tom

Tom

hopes

hofft

that

dass,

he

er

'll meet

trifft

Mary

Mary

this

Abend

evening

heute

A0 A1 AM-TMP

A1

AM-MOD V

A0 V

Figure 2: A word-aligned German-English sentence pair from the training data. The two semantic frames of the English source
sentence are indicated by the blue and orange boxes above. Each box spans the words of a frame element. For instance,
the first frame has a verb and two arguments, labelled A0 and A1. The A0 argument is ‘Tom’ and the A1 argument is ‘that
he’ll meet Mary this evening’.

the frameset for the verb ‘open’ with the sense intended in a sentence like ‘she opened the door’ (as opposed to, for instance,
the sense used in ‘she opened a restaurant’). The frameset specifies that there are three potential arguments to the verb, labelled
Arg0, Arg1, and Arg2. For most verbs, Arg0 is the agent (or a loosely agent-like role) and Arg1 is the patient (or a loosely
patient-like role). Other numbered arguments (Arg2, Arg3, and so on) have verb-specific roles that are harder to generalize.
These numbered arguments are referred to as core arguments. In addition, there are roles for non-core modifier arguments, such
as AM-MOD (modal), AM-TMP (temporal), and AM-NEG (negation).

Figure 2 gives an example of a word-aligned sentence pair in which the English source sentence is annotated with semantic role
labels. The verb ‘hopes’ has two arguments, A0 (which is the agent ‘Tom’) and A1, the thing that is hoped for. The verb ‘meet’
has two core arguments, A0 and A1, and two non-core arguments, AM-MOD and AM-TMP. We will use this annotated sentence
pair as a running example in the description of this task.

1.1.1 Support for PropBank-style Semantic Role Labelling in Moses

We have extended the Moses toolkit to include some support for PropBank-style annotation. Li et al. (2013) use the Berkeley
parser and an in-house semantic role labeller in their experiments. Currently, we assume the use of the SENNA toolkit (Collobert
et al., 2011) for both parsing and semantic role labelling. Specifically, Moses now has:

• A wrapper for SENNA that produces 1-best syntactic parse trees in Moses XML format, annotated with semantic role
information. A fragment of the resulting XML for our English example sentence is given in Figure 3.

• Support in the rule extraction and scoring pipeline for accessing and making use of semantic role information.

When evaluated on standard tasks, the SENNA toolkit has been shown to produce results that are close to state of the art
(Collobert et al., 2011). However, for the current application it has a few disadvantages:

• SENNA can only produce 1-best annotations. In some models (as we will describe later), it may be useful to use the k-best
trees (and corresponding semantic role labels).

• If the SENNA parse trees are used in syntax-based models, then translation quality is slightly degraded compared to the
Berkeley parser or Brown parser.

— 6 —
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...
<tree label="VP">
<tree label="VBZ" semantic-frame-0="V"> hopes </tree>
<tree label="SBAR" semantic-frame-0="A1">
<tree label="IN"> that </tree>
<tree label="S">
<tree label="NP" semantic-frame-1="A0">
<tree label="PRP"> he </tree>

</tree>
...

Figure 3: A fragment of the source-side parse tree with semantic role annotation (Moses XML format).

• The semantic role labels and parse trees are produced independently. Since an argument must be a constituent, the
two annotations cannot easily be aligned if they have different argument boundaries. Currently, such frames are simply
discarded.

As an alternative to SENNA, we could also move from PropBank-style semantic roles labels to “functors” in the tectogrammat-
ical representation of sentences, see the Prague Czech-English Dependency Treebank (Hajič et al., 2012) for a brief description
and references to the underlying theory, and use the automatic functor assignment tool by Ondřej Dušek as developed for the
project FAUST1. The main change since the Deliverable is that the tool now covers not only Czech but also English and that
it relies on Vowpal Wabbit learning toolkit. The current state of the art in semantic role labelling involves standard machine
learning techniques. In brief, features are extracted from a parse tree and given as input to a classifier which determines for each
tree node whether or not it is part of a verb or argument and, if so, what its label is.

1.2 Li et al’s (2013) Semantic Role Mapping Model

Li et al. (2013) extend the hierarchical phrase-based model Chiang (2007) to include a model for mapping semantic roles from
the source sentence to target sentence. Their model allows for the reordering and deletion of arguments. The Moses toolkit has
included support for hierarchical phrase-based training and decoding for a number of years. Li et al. (2013)’s model involves
the following changes to the standard hierarchical phrase based model:

1. Rule extraction uses hard syntactic constraints. For each sentence pair, a source-side parse tree is used to restrict the spans
from which initial phrases are extracted. To avoid being over-restrictive, both the parse tree and extraction process are
relaxed.

2. Semantic roles are mapped from the source side of the training data to the target side, via word alignments.

3. A semantic role mapping model is learned from the training data. This is referred to as the Predicate-Argument Structure
(PAS) reordering model.

4. Decoding uses an input parse tree to close, i.e. prohibit, chart cells. In other words, rules can be applied over some spans
and not others, as determined by the parse tree.

5. The PAS model is used as a feature function during decoding.

So far, we have implemented items 1, 2, and 4. We will give some details shortly, along with some preliminary results and
analysis on argument reordering patterns in several language pairs.

1.2.1 Syntactic Constraints: Implementation

Li et al. (2013) provide an in-depth description of their syntactic constraints. We have reproduced their method without change.
In brief:

1. The head words of nodes are marked (we implement Michael Collins’ head finding rules (Collins, 1999)) and the trees
are flattened according to head values. If a node m and a child node n have the same head word, then the child node n is
eliminated from m’s list of children and replaced by n’s children.

1 ftp://mi.eng.cam.ac.uk/pub/faust-pub/Deliverables/FAUSTD5.5.pdf, page 11
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en-de en-ro en-zh
Cochrane NHS24 Khresmoi Cochrane NHS24 NewsCommentary

Phrase-based 35.5 28.0 18.4 34.0 27.1 11.8
Hierarchical phrase-based 34.7 27.4 17.9 32.6 27.3 11.9
Tree-to-string 33.1 24.6 19.2 32.1 21.0 12.3
Li et al. (2013) constraints 33.3 26.1 18.2 31.1 26.1 12.1

Table 1: Translation quality (averaged Bleu) for baselines and systems using hard syntactic constraints.

2. Rule extraction is allowed for any span in which there is i) a single constituent, or ii) two or more sibling constituents
(after tree flattening).

3. The limit on initial phrase length is removed (allowing rules that span the entire sentence).

During decoding the same span constraints used in item 2 are also used to determine which chart cells are closed.

1.2.2 Syntactic Constraints: Preliminary Results and Analysis

In our preliminary experiments, we test the effect of using syntactic constraints. Li et al. (2013) report Chinese-to-English results
for a comparable experiment using three newswire test sets. For two test sets, they observe a significant improvement in Bleu
and for the third, the difference is negligible. On average, they observe an improvement of 0.6 Bleu.

In these experiment, we have used two of the four HimL language pairs, English-German and English-Romanian. Since the
original work that we seek to reproduce (and extend) was performed on the English-Chinese language pair, we also include that
language pair as a point of comparison (although in the reverse direction, since we do not have a Chinese semantic role labeller).

As baselines we built phrase-based, hierarchical phrase-based models, and tree-to-string models (for further details of the last
model type, see Williams et al. (2015)). We sampled 2M sentence pairs of training data for each language pair (as in the HimL
systems, we used data from the OPUS repository for the Chinese-English system). Apart from minor details (and the reduced
training data size), the phrase-based baselines are configured the same as the Y1 systems.

We compare the baselines against a hierarchical phrase-based model with hard syntactic constraints (as described above). Table 1
gives the Bleu scores, which are averaged over three tuning runs. The results are somewhat mixed and will require further
analysis. For all of the HimL test sets (Cochrane and NHS24), using parse trees (either Li et al’s constraints or tree-to-string)
leads to a drop in translation quality compared to the phrase-based or hierarchical phrase-based model. In the other two cases
(Khresmoi for English-German and NewsCommentary for English-Chinese), there is a small improvement from using hard
constraints.

One particularly surprising result is the drop of 6 Bleu points on the NHS24 test set for the English-Romanian tree-to-string
system. Examining the translations reveals that this is due to the decoder frequently choosing to use a rule that appends a
sequence of underscores to a sentence, resulting in translation like the following:

healthy bones - Falls prevention &bar; NHS inform
s??n??tatea oaselor - USA prevenirea &bar; NHS cu _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

This rule reflects a pattern that occurs occasionally in the training data, but that is undesirable when translating the test set.
Simply stripping the underscores boosts the Bleu score by 5.4 points. Further inspection of the 1-best output indicates that there
are similar rules being used out of context and that there is likely to be scope for improving tree-to-string translation quality
through the use of additional features that regulate the introduction of unaligned target words.

It is currently unclear how much of the Bleu scores variability for the different model types is to do with linguistic qualities of
the languages, how much is to do with parse quality, and how much it is to do with the domain or quirks of the training data. We
will explore these questions in subsequent work.

1.2.3 Semantic Role Mapping: Implementation

Li et al. (2013) do not provide details of their semantic role mapping method, other than to say that roles are projected across
word alignments. This leaves some open questions. For instance, in Figure 2 what is the projected role label for ‘er’? Is it A0,
AM-MOD, or something else?

Our current implementation takes as input a word-aligned parallel corpus with source-side role annotation. For each sentence
pair, it outputs a label sequence for each frame. For our example sentence pair, it outputs the following two sequences:

— 8 —
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en-de en-ro en-zh
Normalized 0.86 0.92 0.88
Adjusted 0.79 0.89 0.84

Table 2: Kendall-Tau distance for argument permutations.

hopes ||| A0 V A1 A1 A1 A1 A1 A1 A1 ||| A0 V A1 A1 A1 A1 A1 A1 A1
meet ||| - - - A0 AM-MOD V A1 AM-TMP AM-TMP ||| - - - - A0 AM-TMP AM-TMP A1 V

The first field is the verb, the second is the source label sequence, and the third is the target label sequence.

If a target word has multiple projected role labels then the count of each label is recorded and the most frequent label is chosen.
If there is a tie then the following disambiguation method is used:

• In a first pass over the data, we gather the projected role label counts for each target word type (in the example, we count
how many times A0, AM-MOD, and any other label, is projected onto the word ‘er’).

• During the second pass, we pick the candidate label that has been observed most frequently for the given target word.

The resulting sequence is then reduced by eliminating non-labels and merging contiguous repeated labels. For the example, this
yields:

hopes ||| A0 V A1 ||| A0 V A1
meet ||| A0 AM-MOD V A1 AM-TMP ||| A0 AM-TMP A1 V

If the resulting target label sequence contains repeated occurrences of a label (e.g. A0 V A0) then the frame is deemed inconsis-
tent and discarded.

1.2.4 Semantic Role Mapping: Preliminary Results and Analysis

We have not yet implemented Li et al. (2013)’s PAS model, but to give a sense of how much predicate-argument reordering there
is for different language pairs (and therefore how much scope the model has for influencing translation), we ran our semantic
role mapper over the 2M word-aligned sentence pairs for the three language pairs used in the previous experiments. We ignored
deleted arguments and focussed on reordering. For our example sentence pair, this measures the degree of reordering in the
following pairs of role label sequences:

hopes ||| A0 V A1 ||| A0 V A1
meet ||| A0 V A1 AM-TMP ||| A0 AM-TMP A1 V

To measure reordering we calculated the Kendall-Tau distance for each semantic frame and averaged it across the training set.
The Kendall-Tau distance has been used previously in machine translation for measuring reordering at the word level (Birch and
Osborne, 2011). We calculate both the normalized Kendall-Tau distance and, following Birch and Osborne (2011), the adjusted
Kendall-Tau distance (the square root of the standard metric). We subtract both from 1, so that a value of 0 indicates maximum
disagreement and 1 indicates none.

Results are give in Table 2. These results suggests that there is a higher degree of predicate-argument reordering in English-
German than English-Chinese, which bodes well for the application of the PAS model to that language pair. The higher value
for English-Romanian suggests that there will be less scope for improvement in that language pair.

1.3 Alternative Models

Adding general support for semantic role labels in Moses has reduced the engineering effort required to experiment with alter-
native models. So far, we have re-implemented one approach, which we will briefly describe here, along with some preliminary
results.

1.3.1 Bazrafshan and Gildea (2013)

Bazrafshan and Gildea (2013) extend the GHKM rule extraction method (Galley et al., 2004) to take semantic role structure into
account. Their approach involves running a semantic role labeller over the target-side of the training data and then performing

— 9 —
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System test 1 test 2
English→ German Hiero 17.6 20.0

T2S 18.0 20.3
+ SRL 18.1 +0.1 20.4 +0.1

English→ Russian T2S 29.9 25.8
+ SRL 30.0 +0.1 26.0 +0.2

Russian→ English S2T 28.1 22.8
+ SRL 28.3 +0.2 23.1 +0.3

English→ Czech T2S 21.8
+ SRL 21.8 +–

Table 3: Preliminary results for our reimplementation of Bazrafshan and Gildea (2013)’s model.

a modified two-pass rule extraction step: in the first pass, standard GHKM rules are extracted; in the second, ‘semantically-
complete’ rules are extracted. These must include either all arguments of a predicate or none. An indicator feature is used to
distinguish the two types of rule. The rules are then used in standard string-to-tree decoding.

We have reimplemented their method and run some preliminary experiments. These experiments were run before the HimL
systems were created and so are based on the systems built for the WMT15 translation task (Williams et al., 2015). We use
SENNA for semantic role labeller (as opposed to Bazrafshan and Gildea (2013)’s in-house labeller)

Results are given in Table 3. There is a consistent, albeit very small, increase in translation quality.

In a preliminary analysis, we manually inspected English-to-German translations, using sentence-level Bleu scores as a guide
to identifying where the model was having an effect. This analysis suggested that the main effects were that there was more verb
movement and less verb deletion. We intend to re-run these experiments on the HimL systems and to conduct a more detailed
analysis.

1.4 Conclusion

We have described our progress so far on modelling semantic role labelling in machine translation. This includes the partial
reimplementation of Li et al. (2013)’s model and the reimplementation of Bazrafshan and Gildea (2013)’s model. The results
so far have been mixed and require further analysis. Our preliminary analysis of predicate-argument reordering suggests that
there is particular scope for improvement through using Li et al. (2013)’s PAS model for the English-German language pair. We
have found that using hard syntactic constraints does not always improve translation quality, although this may change as we
add features to improve the models.

We intend to continue using an experiment-led approach to determine what works best for the HimL systems. One avenue for
improving the use of hard syntactic constraints is using k-best or forest-based methods instead of relying on 1-best trees (Mi
et al., 2008). Since SENNA does not produce k-best or forest outputs, there are two options: to use an approach based on
transformation of the 1-best output (e.g. Zhang et al. (2011)) or to develop an in-house labeller. We will explore the feasibility
of both options.

2 Task 2.2: Enforcing Negation Through Shallow Semantics

The goal of Task 2.2 is to ensure that polarity (negation) is well preserved in translation, with a focus on the medical domain.
The task is planned to start in year 2 of the project but UEDIN within HimL have already done significant work in this direction.
A full description of the negation related project is included in Appendix A.

The goal of handling negation is also partly covered by Task 2.3 (Section 3) and Task 3.3 (Corrective approaches to morphology,
see Deliverable 3.1).

The work on Task 2.2 we have done during the first year of HimL can be summarized as follows:

1. Getting acquainted with previous work on the topic.

2. Understanding where the gaps in previous work are: Through an analysis on what has been done with regard to negation
in SMT, we can conclude that:

• Negation is only considered in a few works and it is often treated as a side problem. Collins et al. (2005) and
Li et al. (2009) consider it among other linguistic phenomena in the bigger picture of clause restructuring and re-
ordering; Baker et al. (2012) take it into consideration only when it is associated with modality; finally Popovic and
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Arcan (2015) and Bojar et al. (2013) take negation into account only amongst other types of errors the SMT system
produces.

• Even when negation is the focus of a study, the scope is narrow and only one hypothesis or language pair is consid-
ered.

• None of the previous studies has conducted an extensive error analysis on the phenomenon so it is not clear what
exactly are the kind of errors produced by an SMT system and what those depend on. This is connected to the
previous item, where an hypothesis is formulated without any thorough inspection of the data.

3. Understanding negation, with particular emphasis of its translation: Analysing the errors involved in translating negation
leads us to the question of what is meant by negation and what are we assessing the translation of. Previous work that have
specifically addressed the problem of translating negation (Wetzel and Bond (2012) and Bojar et al. (2013) in particular)
have cast the problem of translating negation as a binary outcome of whether a single element, the negation marker,
has been translated or dropped during translation. Reducing it to a presence vs. absence problem is however an over-
simplification. The negative marker interacts in fact with certain elements in the sentence whilst some others are outside
its scope; this implies that if during translation, certain elements that are not under the scope of negation are brought inside
it or viceversa, the overall rendering of the negation phenomenon is not correct. For this reason, the present work starts
from the assumption that negation is a structural phenomenon, composed of a finite set of elements that interact with each
other. Following Blanco and Moldovan (2011), Morante and Blanco (2012) and Morante et al. (2011), we define these
elements as follows:

• cue: the word (e.g. not), morpheme (e.g. un- in unusual) or multi-word unit (e.g. by no means) inherently expressing
negation. The cue is the ‘anchor’ of textual negation, i.e. in order for an instance of textual negation to exist, there
has to be a cue.

• scope: all the elements whose falsity would prove negation to be false. In other words, the scope includes all those
elements in a sentence whose truth value can influence the truth value of negation itself. For instance in the sentence
I am not going to school where I, am going and to school are part of the negation scope, if we invert the truth value
of to school (to somewhere but not a school), negation will not hold anymore. The cue is not considered part of the
scope. Furthermore, it is important to notice that the scope might be discontiguous (e.g. ‘I, who was majoring in
English Literature at the time, never had the chance to meet him.’)

• event: the element in the scope the cue directly refers to (e.g. “He is not driving a car”). Even if there might be
different interpretation of what a negation event is (e.g. a hierarchy of semantic events — for instance He is not
driving a car involves the event of ‘moving’, ‘driving’ and ‘car-driving’), we consider here as event the lexical unit
that is directly negated. Events are usually associated with the predicate negation has a scope on: verbal (as in ‘He
is not driving’), adjectival (as in ‘He is not beautiful’) and nominal (as in ‘He s not a professor). Even if the cue is
not included in a predicate VP, the event is considered the head of the predicate of the clause that contains the cue
(e.g. [Nobody]NP [likesV spaghetti]VP). Unlike previous work, when the event was defined as the minimal unit the
cue directly refers to, we here consider the event as including auxiliaries, copulas or modifiers it may appear with.
Finally, a negation instance might or might not contain an event (e.g. interjection as in ‘Do you want to buy it? No,
thanks’ or verbal ellipsis as in ‘She swims but I do not’).2

Given the three elements above, the problem of translating negation can be then redefined as the problem of correctly
translated cue, event and scope. Given that these constituents are not language specific, a first advantage of decomposing
negation is that all typological variations conform to a set of three basic elements. In the context of SMT, there is also
the advantage of reducing negation into tangible elements at the string level. Finally, given that we have defined a set of
categories to work with, we are now able to classify the errors made by a machine translation system more precisely.

4. Understanding the problem of translating negation (i.e. “What are are the errors made by translation systems?”, “Do
different language pairs and systems show different error patterns?”):

• Evaluate the translation of negation manually: we conducted a manual analysis of the errors involved in translated
negation for the Chinese-English and English-Korean language pair, showing that different languages are affected
by different error patterns. Although beyond the set of languages explored by the HimL project, we believe that such
exploratory analysis can be easily applied to European languages as well.

Based on these findings, we are planning to undertake the following steps:

2 Although not in the scope of the present work, previous literature has also considered the focus, i.e. the part of the scope that is directly negated or more
emphasized, as a sub-constituent of negation. Focus is the most difficult part to detect since it is the most ambiguous. For example, in the sentence ‘He does
not want to go to school by car’ the speaker might emphasize the fact that ‘He does not want to go to school by car’ or that ‘He does not want to go to school
by car’ (but he wants to go somewhere else) or that ‘He does not want to go to school by car’ (but by other means of transportation).
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• Plan the development of an automatic semantic evaluation for negation: the goal is to be able to automatize the manual
analysis so it can be extended to any language pair or system. This is because, the sub-components of negation we are
working with (cue, event and scope) are in principle language-independent. To do so, we are going to:

• Develop an automatic negation detection algorithm, to detect cue, event and scope automatically.

• Develop a way to assess the overlap between machine output and reference translation with regards to these three elements.

During this first year we also published two related workshop papers:

• F. Fancellu, B. Webber (2015), Translating Negation: Induction, Search and Model Errors, Proceedings of SSST-9, Ninth
Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 21-29, Denver, Colorado, June 4, Associ-
ation for Computational Linguistics.

• F. Fancellu, B. Webber (2015), Translating Negation: A Manual Error Analysis, Proceedings of Ex-Prom Workshop,
NAACL-HLT, pages 1-11, Denver, Colorado, June 5, Association for Computational Linguistic

3 Task 2.3: Improving Core Fidelity of Shallow Models

The goal of Task 2.3 is to improve translation quality of shallow models (mainly phrase-based and perhaps also shallow-syntactic
ones) by avoiding errors introduced by individual translation units (i.e. phrase pairs in the phrase-based approach). Other errors
may be still introduced due to some inadequate combination of translation units, indicating a modelling error of the approach.

We motivated the task observing that current word alignment and phrase extraction techniques allow for systematic extraction
of incorrect phrase pairs. In the example:

• English: He has | very little interest .

• Czech: Nemá | velký zájem .

• Gloss: He-does-not-have | great interest .

the “|” denotes phrase segmentation and translations as licensed by current alignment and extraction techniques. If this is a pair
of training sentences, the system will learn that “Nemá = He has” (while the actual meaning of “nemá” is “he does not have”)
and that “very little interest = velký zájem” (while the actual meaning of “velký zájem” is “great interest”).

When a new sentence is translated and the system decides to use both of these phrases, the translation will be correct, with
correct negative polarity. But if only one of them is found in a source sentence, with the rest of the source sentence covered
using phrases extracted from other sentences, the polarity of its translation will be reversed.

Since there is no explicit link between phrases in phrase based MT (except for the limited n-gram overlap due to the language
model), we assume that the translation quality can be improved by avoiding such risky or outright erroneous phrase pairs.

3.1 Errors Fixable by Avoiding Wrong Translation Units

In the analysis of our best English-to-Czech system, Chimera (Bojar et al., 2013; Bojar and Tamchyna, 2015) (see Tamchyna and
Bojar (2015) for a detailed analysis of the system), we checked the quality of phrase pairs from two sources: phrases extracted
using the standard phrase extraction pipeline from a parallel corpus and phrases produced by a transfer-based deep-syntactic
system TectoMT, which Chimera uses in a simple system combination. We looked at the percentage of such bad phrase pairs in
two settings:

• phrase pairs contained in the phrase table

• phrase pairs used in the 1-best translation

We can assume that most of the noisy phrase pairs in the phrase tables are never used in practice (they are improbable according
to the data or they apply to some very uncommon source phrase). That is why we also looked at phrase pairs actually used in
producing the 1-best translation of the WMT 13 test set.

For each of the two settings, we took a random sample of 100 phrase pairs from each source of data and had two annotators
evaluate them. The basic annotation instruction was: “A phrase pair is correct if you can imagine a context where it could
provide a valid translation.” In other words, we are checking if a phrase pair introduces an error already on its own.
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OK Bad Unsure IAA

phrase table from Corpus 76.0% 17.5% 6.5% 78.0
by TectoMT 66.3% 26.3% 7.4% 83.0

used from Corpus 89.0% 7.5% 3.5% 94.0
by TectoMT 87.5% 9.0% 3.5% 87.0

Table 4: Correctness of phrases in Chimera’s phrase tables.

Annotators agree Disputable
Negation:
we need , nemusíme (we need not)
offer , nenabízí (does not offer)
no means , prostředky (means, resources)
Content word mistranslation:
this week in , tento měsíc v (this month in)
Content word missing:
town hall , město (town, city)
images of distant , vzdálených (distant)
cd 4 count , CD 4
think he will , , že (that)
Incl. missing pronouns:
him . , .
put me , dát (put)

Things that get often dropped:
she , už (already)
provided , jsou (they-are)
does , chce (he/she/it wants-to)
Differences in person:
can we , může (she/he can)

Figure 4: Types of errors of phrase-table entries where two annotators agreed that the phrase-table entry is wrong or where they
disagreed about its usability in translation.

Table 4 shows the results of the annotation. As expected, the percentage of inadmissible phrase pairs is much higher in the first
setting (random samples from phrase tables), 17.5–26.3% compared to 7.5–9.0%. Most phrase pairs which contributed to the
final translations were valid translations (87.5–89.0%).

The phrase table extracted from TectoMT translations was worse in both settings. However, while only two thirds of its phrase
pairs were considered correct, more than 87% of the phrases actually used were admissible. This shows that the system combi-
nation in Chimera is effective and the final decoder is able to pick the correct suggestions quite successfully.

Interestingly, despite the rather vague task description, inter-annotator agreement was quite high: 80.5% on average in the first
setting and 90.5% in the second one.

We extend this analysis by checking the types of errors observed within phrase-table entries. Figure 4 lists the typical examples,
confirming that reversed negation is a prominent reason for marking a phrase-table entry as wrong, followed by issues with
content words.

So far, our analyses started from erroneous phrase table entries, since in this task, we try to avoid them. Aside from this, it would
be also useful to have the global view, to have the answer to the question: “What proportion errors in MT output can be fixed
by avoiding wrong phrase table entries?” This question can be partially answered by educated guess, by looking at wrong MT
outputs and considering the size of the span and other aspects of MT choices in the output.

We used the WMT 2015 manual ranking data to find bad sentences produced by our English-to-Czech MT system Chimera
(Bojar and Tamchyna, 2015). WMT rankings are relative, so we had to come up with some heuristics identifying which relative
rankings say that Chimera produced an absolutely bad sentence. One such example of a typical dismissive ranking is illustrated
in Figure 5.

If we consider annotation screens (WMT15 “HITS”) where ranks 1 or 2 are assigned to a system (there is a very good or good
competitor), Chimera got rank 5 (Chimera was very bad) and rank 4 is free (Chimera was distinctly worse), we get 33 screens
out of the total of 2709 screens mentioning Chimera. Admittedly, this is a small sample to get a reliable statistic but it is the
easiest way how to get to outputs of a top-performing MT system that are bad on the absolute scale.

Table 5 details our analysis of errors in these sentences. In 7 cases, our heuristics failed and the sentences were actually
acceptable translations (when compared with the reference). In 3 cases, the fluency of the sentences was obviously distorted,
but this type of error is beyond what we expect can be fixed within individual phrase-table entries.

Unfortunately, the most frequent errors, as listed further down the list, are mostly impossible to avoid by removing wrong
phrase-table entries. On the positive side, the most frequent error (participants’ roles badly translated) is going to be dealt with
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System Best (1) 2 3 4 5 (Worst)
A •

B •

C •

D •

E •

Figure 5: A sample WMT manual ranking that suggests that systems A and B produced bad translations, not acceptable translations
that just happened to sound worse than those from the other systems.

# Error Fixable in phrase table?
7 Unclear Why Bad –
3 Fluency No
6 Participants’ Roles No
3 Lexical Choice (Verb) No
4 Misleading No
2 Refl-Possesive No
2 Verb (Missing) Hopefully
1 Neg Lexicalized Maybe
1 Content Missing (Subject) Hopefully
1 Lexical Choice No

. . .

Table 5: Types of errors in bad Chimera outputs. The last column contains our impression whether such an error
can be fixed by avoiding bad phrase-table entries.

in Task 2.1 in this workpackage, see Section 1.

Based on the listing, we see chances for “core fidelity” (avoiding bad phrase pairs) in two areas: (1) avoiding negation flip, and
(2) ensuring content words do not get lost. We expected a larger repertoire of errors, but sadly, the data do not seem to allow for
more. In this task, we will thus focus on these two types of errors.

It should be noted that (1), avoiding errors in negation, is separately dealt with in Task 2.2, see Section 2. Here in Task 2.3, we
take a more direct and pragmatic approach, see Section 3.2 below.

For (2), preserving content words, we plan experiments for the next year.

3.2 Preventing Negation Flip

As thoroughly discussed in Section 2 and Appendix A, translation of negation or antonyms is a problematic issue in SMT.
Despite the severity of the errors, only a few recent publications on this topic exist.

The existing solutions of this problem include linguistic analysis and hand-tailored algorithms that handle negation for a given
language pair (Jang and Kim, 2015), extending corpora with original data synthetically rephrased to negated sentences (Wetzel
and Bond, 2012), or the careful annotation of negation as carried out in Task 2.2 (Section 2).

The correction of negation is also handled by various post-editing systems such as Depfix (Rosa, 2014). In this task, we try to
avoid errors in translating negations in a phrase-based translation system. In particular, we focus on errors caused by insertion
or deletion of negation.

From experience, we know that a source word can easily be aligned with its opposite or negated form on the target side with no
negation markers included in the alignment. For example, consider the sentence pair in Figure 6 which results in the extraction
of an incorrect phrase pair “I have = nemám (I don’t have)” as in the motivating example at the beginning of Section 3.

Nemám žádného psa.

I have no dog.

Figure 6: The typical result of automatic word alignment and phrase extraction, leading to the loss of negation.
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impossible possible

možnývyloučený

vyloučenýmožný

f a

e b

eb

pmi(x, f) pmi(x, a)

rules,
WordNet or

other database

Figure 7: An illustration of a suspicious alignment pair f − e. The word “impossible” ( f ) is aligned with “možný” (e), but there exist an
antonym a which includes e higher in the list of its translations (sorted by the pointwise mutual information) than a word b
(“vyloučený”), which is on the other hand a better translation of f . If f − e is a suspicious alignment pair then a − b is very
likely also a suspicious alignment pair, subject to the various thresholds.

We propose a statistical method of identifying the spots in aligned parallel data where a word is aligned to its negated form in
the other language, as in the example above. A more detailed description of this method is given in Section 3.2.1.

We conduct two experiments with machine translation: (1) we filter out phrases that do not match in polarity from the phrase
table in Section 3.2.2, and (2) we repair the word alignment by adding an alignment link to the negation cue if a word is aligned
to with its antonym but no negation cue in Section 3.2.3.

3.2.1 Identifying Suspicious Alignments

In order to identify errors in alignments, we create a list of word-antonym pairs on the source side. WordNet (Miller, 1995) was
used for this purpose. Besides WordNet, one can also obtain a list of antonyms by simple rule-based generation (such as adding
the prefixes in- or un- to the word), consulted with the actual count of appearances of the generated antonym in the data.

Now, for each word f on the source side and its translation e, we estimate the pointwise mutual information pmi(e, f ) of e being
the translation while f is on the input. We can think of the pointwise mutual information as a measure of quality of a translation.
It is computed as follows:

pmi(x, y) = log2
p(x, y)

p(x)p(y)
(1)

We assume that in parallel data, more sentences are positive than negative and that the translation is more likely to preserve
the location of negation than to move it to another element in the sentence. As a consequence, each word is more likely to be
translated using the word of the same polarity.3 This allows us to identify suspicious alignments: alignments of words that are
very likely (cross-lingual) opposites of each other.

The alignment between a source word f and a target word e is called suspicious if there exists an evidence pair (a, b) of two
words aligned to each other such that:

pmi(e, a) > pmi(e, f ) ∧ pmi(b, f ) > pmi(e, f ) (2)

In other words, we want to find an antonym a of the target word f and a word in the source language (b), such that first, e is a
better translation of a than of f , and second, f is a better translation of b than of e. See the example in Figure 7.

Once we find an evidence pair for an alignment f −e, we consider f −e suspicious in terms of preserving negation. The antonym
a of f can be regarded as a correct (better) translation of e, which means that the meaning of f has to be negated (or inverted)
to be the proper translation of e. Since we assume that the sentences as whole correctly preserve the meaning, we expect to

3 Many exceptions exist; based on a quick analysis performed by a colleague of us, Martin Popel, using a half of the CzEng corpus, about 0.9% of nodes in the
tectogrammatical layer of annotation (which roughly correspond to content words) do not have the same value of the negation flag. The negation is expressed
somewhere else in the sentence. Prominent examples are e.g. “to není možné (it is not possible) — it is impossible”, “se nepotvrdil (was not confirmed) —
had proved it is not the case”, “neoprodleně (immediately) — without any delay”, “sotva postřehnutelný (hardly perceptible) — imperceptible”.
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find a negation cue somewhere in the vicinity of the word f . Section 3.2.3 describes the experiment where we add the missing
alignment link between the word e and the negation cue.

In order to work with incorrect alignments only with high confidence, we apply thresholds to counts of the individual words
seen in the data as well as to counts of pairs of words aligned to each other. We also apply a threshold to pointwise mutual
information values computed to filter out poor evidence pairs.

Among the suspicious alignments, we select the incorrect ones by applying another threshold value to the actual difference
between pmi(e, a) and pmi(e, f ), and another threshold value to the difference between pmi(b, f ) and pmi(e, f ).

3.2.2 Phrase Table Filtering

Our initial experiments were conducted using Moses (Koehn et al., 2007) and the plain phrase-based model for our WMT15
submission (Bojar and Tamchyna, 2015). This is a very competitive setup thanks to the large parallel and monolingual data.

From the phrase table, we filter out phrase pairs that contain the word not on the source (English) side and do not contain any
negated word on the target (Czech) side. The phrase table was constructed with words represented as the pair of word form
and morphological tag on the target side. Czech morphological tags include an indicator of negation, so finding the problematic
pairs is very easy.

We apply the filtering after the MERT optimization, on the phrase table limited to entries needed for the translation of the test
set. The weights of the model are thus kept intact and the filtering is very fast.

The original phrase table contains about 26.4M entries and the filtered one contains 26.0M entries. The filtering thus removes
about 1.35% of entries. Note that the phrase table is already restricted to the test set.

The baseline model achieves BLEU score of 23.29 and the filtered model slightly improves on this, reaching BLEU of 23.36. A
small manual evaluation also confirms the improvement: negation does not get lost that often.

Note that this initial experiment did not make any use of the automatically identified pairs of words and their antonyms in the
target language. We will extend the filtering and remove also phrase pairs containing such bad pairs of words and missing any
negation cue.

3.2.3 Fixing Alignments

One of the possible utilizations of the list of incorrect alignments is to try and fix them.

In short, we process all the word alignment pairs and if the alignment is suspicious as defined in Section 3.2.1 above, we ensure
that a negation cue must be also linked to this word pair. Adding such a link prevents phrase extraction from extracting the
wrong phrase pair.

We search for the cue in neighboring positions around both words from the alignment. If there is one found, we add an alignment
between the cue and the word on the other side of the alignment. We ignore the alignment when the cue is found on both source
and target windows (which is a relatively rare event). The selected window in our experiments was 3 words to the left and 1
word to the right of the current word. The cue words searched on the English side include not, none, n’t, hardly, little, etc. On
the Czech side, every word whose tag indicates it is negated is considered a potential cue word.

When fixing alignments in the training corpus of 52,557,627 sentence pairs, only 30,418 were fixed. This amounts to only about
0.06% of repairs. The main reason lies probably in the fact that our search for negation cue is very limited and we fail to find
the cue for many suspicious alignments.

The translation table extracted using these fixed alignments contained 34,242 fewer extracted phrases than the translation table
extracted following the original alignments. This is a very little change, only 0.005% of entries, since here we work with the full
phrase table of 671M entries, not just the version limited to a given test set.

As a result, the BLEU score did not change and even the manual annotation did not reveal any improvement.

3.3 Conclusion

In Task 2.3, we tried to improve core fidelity of the phrase-based model by avoiding phrase pairs that are very likely to introduce
a translation error. A detailed analysis revealed that there are fewer opportunities for such corrections than anticipated, but they
are still worthwhile.

We started by avoiding negation flip, proposed a method for identifying suspicious word alignments and got promising results
in our initial experiments with phrase-table filtering. The suspicious alignments have yet to show their utility.

In the coming year, we will continue the work on avoiding negation flip and we will also design methods for the other good
opportunity: ensuring that content words are not lost in translation.
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4 Task 2.4: Employing High-Quality Large-Scale Dictionaries

Task 2.4 is planned to start in year 2.

Conclusion

This deliverable D2.1 of the HimL project documents that the work in WP2 Semantically Motivated MT runs smoothly, without
any deviations from the plan.
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A Challenges in translating textual negation

Abstract

Amongst a wide range of linguistic phenomena Statistical Machine Translation has addressed, negation is still one that
has not yet received adequate treatment. While techniques have been proposed and implemented for improving translation
performance on negation, they all follow from the developers’ beliefs about why performance is worse. These beliefs, however,
have never been validated by a thorough understanding of what negation is and what the errors involved in translating it are.
On the other hand, the present work starts by considering what is meant by negation and what makes a good translation of a
negative sentence. We first consider breaking down negation into its sub-constituents (cue, event and scope) to allow efficient
manipulation of a semantic phenomenon in a primarily string-based task, such as SMT. Focusing on these three elements, we
present the plan for a semantic evaluation potentially applicable to any language pair or system. We will discuss the negation-
related elements that need to be evaluated, how it is possible to detect them automatically across different languages and ways
their translation can be best evaluated.
We hope that such investigation will guide future work on improving the translation of negative sentences, customisable for
different language pairs and machine translation systems.

A.1 Introduction
A.1.1 The problem

Since its early years, Statistical Machine Translation (SMT) has addressed the problem of modelling specific linguistic phenom-
ena whose realisation varies across languages. For instance, phenomena such as pronoun or tense translation (Hardmeier and
Federico, 2010; Gong et al., 2012) are problematic because they involve a mapping operation not only on strings or constituents
but also on a set of linguistic information that are sometimes non-local, into a language that might encode this information
differently or not at all.
Negation also falls into this category. Although it is widely accepted that negation is a semantic universal i.e. every language
has a way to reverse the truth value of a statement, the way each language realises it differs greatly, making it difficult for tasks
involving cross-lingual prediction, such as Machine Translation.
In the NLP community, the importance of negation has been acknowledged in fields other than SMT. Automatic detection of
negation, for instance, is an important part of Biomedical information retrieval where detecting the truth value around one or
more named entities (e.g. “Mr. Lee shows no signs of MERS virus”) allows quick information extraction that can be subse-
quently analysed and stored. The same holds in an automatic translation scenario, where preserving the truth value of a statement
can have serious implications on the quality of the translation, especially if applied to the medical domain. However, despite the
potential gain in ensuring that negation related information is correctly translated, only limited efforts have been made in SMT.
Moreover, most of these efforts either briefly consider negation in the context of other problems - such as reordering (Collins
et al., 2005) or formulate a hypothesis about what might go wrong when translating negation without any previous error analysis
or thorough understanding of the phenomenon itself. The gaps in previous literature are then both theoretical and practical. In
contrast, we want to better understand what it is meant by negation and which of its aspects are to be considered from a cross-
lingual, computational perspective. Furthermore, we want to know what errors an SMT system makes in translating negation, so
as to avoid tentative guesses. Our challenging goal is to have an approach to translating negation that fits into the SMT pipeline
and can be used for many, if not all, language pairs.

A.1.2 The scope of the project

Before introducing the approach taken in this work, it is important to clarify its scope. This work takes into consideration the
translation of what we define as overt textual negation — i.e. negation that is explicitly marked by means of either lexical,
morphological or syntactic processes. This is different from translating the sentiment of a sentence, which is usually defined by
the presence and combination of certain words with either a positive, negative or neutral connotation, which may not be overt
negation items at all. This work also does not deal directly with certain lexical elements that do not contain an explicit negation
marker but have an inherent negative meaning (e.g. failed to X → did not X). We will however take into consideration the
possibility that an item overtly negated can be translated into its antonym (e.g. not expensive→ cheap, not succeed→ fail). An
important aspect of this work revolves around understanding what is negation and how this knowledge can be used to enhance an
SMT system. The main issue arises when we consider that the entire SMT pipeline is based on strings or a combination of those
whilst negation is a rather abstract semantic phenomenon. The present work tries to bridge this gap by breaking negation down
into its sub-constituents (cue, event and scope) and ground them at a string level. An immediate advantage of this analysis is that
we can keep track of each of the negation elements during the translation process so as to guide their translation and interaction.

A.1.3 First year milestones

The first year milestones we will discuss in the present report are as follows:

1. Getting acquainted with previous work on the topic

2. Understanding where the gaps in previous work are

3. Understanding negation, with particular emphasis of its translation
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4. Understanding the problem of translating negation (i.e. "What are are the errors made by translation systems?", "Do
different language pairs and systems?")

• Evaluate the translation of negation manually
• Plan the development of an automatic semantic evaluation for negation

Although the languages here considered are not the ones the project is directly involved with, we believe the conclusion
drawn from this analysis are easily applicable to other language pairs.

During the first year we also published two related workshop papers:

• F. Fancellu, B. Webber (2015), Translating Negation: Induction, Search and Model Errors, Proceedings of SSST-9, Ninth
Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 21-29, Denver, Colorado, June 4, Associa-
tion for Computational Linguistics

• F. Fancellu, B. Webber (2015), Translating Negation: A Manual Error Analysis, Proceedings of Ex-Prom Workshop,
NAACL-HLT, pages 1-11, Denver, Colorado, June 5, Association for Computational Linguistic

A.2 Background
A.2.1 Negation in SMT

The starting point of this work is to verify whether negation is indeed a problem in SMT and if so, why do we consider it an
unsolved problem.

Previous work have pointed out the problem of translating negation for different language pairs: in a Japanese-to-English
translation task, (Wetzel and Bond, 2012) show that the translation system performs worse in terms of BLEU score on a sub-set
of only negative sentences compared to one of only positive sentences; (Fancellu and Webber, 2014) show that the same holds
from a Chinese-to-English hierarchical phrase-based system; (Popovic and Arcan, 2015) point out the problem of translating
from English into South Slavic languages, where SMT systems fails in rendering the double negation structure correctly; finally
in (Bojar et al., 2013), the problem of correctly rendering negation is observed when translating into Czech.

In general, previous work that have tackled the problem of translating negation can be grouped according to what they
hypothesised the cause of this problem is as follows:

• Structural mismatch between source and target language: (Collins et al., 2005) and (Li et al., 2009) see the problem
of translating negation as ‘positional’, given that different languages have different ways of placing the negative marker
with respect to other elements in the sentence. Both works place negation in the context of clause restructuring via pre-
processing of the source sentence.
In (Collins et al., 2005), the German source side is pre-processed both before training and decoding so as to match the
word order of the target language. More specifically, negation is moved to a position that can be easily captured by phrase-
based models. For instance, when the German verbal phrase [[konnten]mod [einreichen es]V [nicht]neg]VP is restructured,
the negative marker is moved back one position to match the English word order [[could]mod [not]neg [hand it in]VP]VP.
(Li et al., 2009) take into consideration translating from Chinese to Korean in the context of phrase-based SMT. Given that
the two languages exhibit different word orders (SVO and SOV respectively), they propose a rule-based pre-reordering
approach to match the syntax of the target language. Part of their work explicitly addresses negation where the negation
marker can be separated from the verbal head in Chinese whist cannot in Korean. For instance, in [1∼3], a propositional
phrase can intervene between the negative marker and the verbal head in Chinese, while the corresponding Korean sentence
does not allow such gap.

(1) Chinese: bùneg

not
yı̄nggāimd

should
[yı̆
as

guănlı̆yuán
administrator

shēnfén]PP

credential
yùnxíngV

run
‘it should not be run as administrator’

(2) Korean: [gwanlija gwonhan-eulo]PP [silhaenghamyeonV anneg doeda]VP

(3) *[silhaenghamyeonV [gwanlija gwonhan-eulo]PP anneg doeda]VP

However, the work seems to focus only on bringing the negation marker close to the verbal head but not inverting its order
to a post-verbal position.
Both works report an improvement on translating quality, measured in BLEU scores.

• Lack of negative training data: (Wetzel and Bond, 2012) address the problem of the lack of sufficient negative training
data as the reason why translation performance of negative sentences (as measured by BLEU) is worse than positive sen-
tences; in the parallel corpora considered, in fact, only ∼20% of the sentences contain one or more instances of textual
negation. To solve this problem, the training set is enriched with negative paraphrases of positive sentences; these are
first transformed into MRS (Minimal Recursion Semantics, (Copestake et al., 2005))-based representation and a negative
‘handle’ is added onto the main verb (i.e. the verbal handle at the top at the MRS graph). This process is applied to both
the English and the Japanese sentence. Improvement over the baseline on a sub-set containing negative sentences only
(+1.63) is observed only in the case when negation paraphrases are also added to the language model.
A manual inspection of those sentences highlights how uninformative n-gram overlap-based automatic metrics are, when
evaluating the translation of negative sentences (here, taken to be whether the negation marker is correctly reproduced
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in the target side when present on the source). Although this approach leads to 33 sentences being translated correctly
when the baseline does not, at the same time the enriched model fails to translate negation correctly in a similar number
of sentences whereas the baseline does. Moreover, the number of what is referred as ‘critical negation-related errors’ is
reduced merely from 69 to 66.

• Lack of any negation related information: Another line of work poses the question of whether the problem lies instead
in the model not containing specific information on how negation is expected to be translated. Unlike (Wetzel and Bond,
2012), these work assume that there is sufficient training data to learn how negation is translated but the model lacks any
guidance on how to use them. (Baker et al., 2012) and (Fancellu and Webber, 2014) try at first to break down negation
into sub-components whose presence and interaction the model can then assess.
(Baker et al., 2012) take into consideration enhancing both source and target side syntactic trees with negation related
information in the context of an Urdu-to-English tree-to-tree syntactic translation task. This is done by adding the notion
of trigger and target, respectively the negative marker and the entity it directly refers to, on both the direct pre-terminal
associated to each of these elements and their common ancestor. The intuition here is that, when during decoding, we are
scoring the likelihood of generating a negated VP, we would expect to give a higher score to those derivations that also
contain a trigger and a target node. Results shows little, although statistically significant, improvement over the baseline
when those rules are enhanced. However, given that the scope of this work includes modality as well and given that no
concrete manual analysis is carried out, it is not clear where this improvement comes from.
On the other hand, (Fancellu and Webber, 2014) try to answer the question of whether it is the model being responsible
for an observed worse translation performance on negative sentences by investigating n-best lists output after decoding. If
these contain a better translation of a negative sentence than the 1-best, it can be concluded that the model can potentially
generate negative sentences but need guidance in promoting those.
The lookup for a better translation is done by decomposing negation into cue (same as the trigger above), event (similar
to the target) and scope (see §2.2 for more detail). In an oracle experiment setting, these elements are approximated in
the n-best list hypothesis and in the reference translation using a dependency parse and then compared. The sentence
whose negation elements are the most similar to the reference translation is brought to the top and automatic evaluation
(re)performed. The oracle leads to a considerable boost of more than 4 points BLEU showing that the model is able to
output a better translation of negation than the baseline. A second experiment tries to use lexical translation probabilities
to score these elements by only relying on the source sentence, whose negation elements are again approximated in a
dependency parse structure.

Although this works differ in the reasons they give on why SMT systems perform worse when translating negative sentences,
common shortcomings are worth highlighting:

1. Negation is only considered in a few works and it is often treated as a side problem. (Collins et al., 2005) and (Li et al.,
2009) consider it among other linguistic phenomena in the bigger picture of clause restructuring and re-ordering; (Baker
et al., 2012) take it into consideration only when it is associated with modality; finally (Popovic and Arcan, 2015) and
(Bojar et al., 2013) take negation into account only amongst other types of errors the SMT system produces.

2. Even when negation is the focus of a study, the scope is narrow and only one hypothesis or language pair is considered.

3. None of the previous studies has conducted an extensive error analysis on the phenomenon so it is not clear what exactly
are the kind of errors produced by an SMT system and what those depend on. This is connected to (2), where an hypothesis
is formulated without any thorough inspection of the data.

A.2.2 Decomposing negation

Analysing the errors involved in translating negation leads us to the question of what is meant by negation and what are we
assessing the translation of. Previous work that have specifically addressed the problem of translating negation ((Wetzel and
Bond, 2012) and (Bojar et al., 2013) in particular) have cast the problem of translating negation as a binary outcome of whether
a single element, the negation marker, has been translated or dropped during translation. Reducing it to a presence vs. absence
problem is however an over-simplification. The negative marker interacts in fact with certain elements in the sentence whilst
some others are outside its scope; this implies that if during translation, certain elements that are not under the scope of negation
are brought inside it or viceversa, the overall rendering of the negation phenomenon is not correct. For this reason, the present
work starts from the assumption that negation is a structural phenomenon, composed of a finite set of elements that interact with
each other. Following (Blanco and Moldovan, 2011), (Morante and Blanco, 2012) and (Morante et al., 2011), we define these
elements as follows:

• cue: the word (e.g. not), morpheme(e.g. un- in unusual) or multi-word unit (e.g. by no means) inherently expressing
negation. The cue is the ‘anchor’ of textual negation, i.e. in order for an instance of textual negation to exist, there has to
be a cue.

• scope: all the elements whose falsity would prove negation to be false. In other words, the scope includes all those
elements in a sentence whose truth value can influence the truth value of negation itself. For instance in the sentence I am
not going to school where I, am going and to school are part of the negation scope, if we invert the truth value of to school
(to somewhere but not a school), negation will not hold anymore. The cue is not considered part of the scope. Furthermore,
it is importance to notice that the scope might be discontinuous (e.g. ‘I, who was majoring in English Literature at the
time, never had the chance to meet him.’)
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• event: the element in the scope the cue directly refers to (e.g. “He is not driving a car”). Even if there might be different
interpretation of what a negation event is (e.g. a hierarchy of semantic events — for instance He is not driving a car
involves the event of ‘moving’, ‘driving’ and ‘car-driving’), we consider here as event the lexical unit that is directly
negated. Events are usually associated with the predicate negation has a scope on: verbal (as in ‘He is not driving’),
adjectival (as in ‘He is not beautiful’) and nominal (as in ‘He is not a professor). Even if the cue is not included in a
predicate VP, the event is considered the head of the predicate of the clause that contains the cue (e.g. [Nobody]NP [likesV

spaghetti]VP). Unlike previous work, when the event was defined as the minimal unit the cue directly refers to, we here
consider the event as including auxiliaries, copulas or modifiers it may appear with. Finally, a negation instance might or
might not contain an event (e.g. interjection as in ‘Do you want to buy it? No, thanks’ or verbal ellipsis as in ‘She swims
but I do not’).4

Given the three elements above, the problem of translating negation can be then redefined as the problem of correctly translated
cue, event and scope. Given that these constituents are not language specific, a first advantage of decomposing negation is that
all typological variations conform to a set of three basic elements. In the context of SMT, there is also the advantage of reducing
negation into tangible elements at the string level. Finally, given that we have defined a set of categories to work with, we are
now able to classify the errors made by a machine translation system more precisely.

A.3 Error analysis
In §2, we have observed that techniques proposed and implemented for improving translation performance on negation have
simply followed from the developers’ beliefs about why performance is worse. These beliefs, however, have never been validated
by an error analysis of the translation output. The present work takes instead an empirical approach towards understanding why
negation is a problem in SMT, by first investigating what kind of errors are involved in translating negation and showing that
tailoring to a semantic task, string-based error categories standardly used to evaluate the quality of the machine translation output,
allows us to cover the wide range of errors occurring while translating negative sentences.

The analysis is the same as we attempted in (Fancellu and Webber, 2015): we first manually annotate both source and
hypothesis translation for the sub-constituents of negation introduced in §2.2 (cue, event and scope) and then use a precision-
recall based metric to quantify the amount of correct translations for each element. The reason why we choose to evaluate the
hypothesis against the source and not the reference translation is because there are potentially different ways the same negation
structure can be rendered; if hypothesis and reference translations differ in the realisation of negation but they are equally correct,
it would be difficult to quantify the errors using a string-matching, precision-recall based metric.

We apply this analysis to both a Chinese-to-English (from (Fancellu and Webber, 2015)) and an English-to-Korean translation
output. We chose these two language pairs to investigate whether the similarity in realizing negation between two languages has
an effect in translating textual negation.

Chinese and English show very similar patterns in expressing negation: they are both SVO languages, where the most
frequent cues are pre-verbal (see (Blanco and Moldovan, 2011) and (Fancellu, 2013)); negation on existentials and copula is
expressed by negating a verb with a separate negation cue; both show morphological negation on adjectives.

On the other hand, translating from English to Korean, involves the problem of translating into a morphologically rich
language. English is an SVO language where negation on verbs is only expressed syntactically, whereas Korean exhibits a SOV
order where negation can be either syntactical and morphological. Moreover, unlike English, in Korean there exists a separate
verb form for negative existential and copula. Finally, there is a data sparsity issue when dealing with this language pair.

A.3.1 Annotation of negation

The first task is to annotate cue, event and scope in both source and hypothesis translation. The annotations are carried following
the guidelines released during the *SEM 2012 shared task for automatic detection of negation (Morante et al., 2011). It is
however worth noting that while these guidelines were released with the goal in mind of automatically extracting information
from text, with a particular emphasis on factuality, the present work focuses on translation, where each negation instance is taken
into consideration as potential source of error. This leads to some differences in the annotation process, especially in the case of
the event:

1. While the original guidelines do not annotate the presence of an event when this is non-factual, such as in conditional
clauses (‘if he doesn’t come, I will blame you’), the demands of translation require it to be annotated.

2. While the original guidelines do not include modals or auxiliaries in the event annotation (in order to minimise the number
of annotated elements), getting these elements correct in translation is needed to distinguish a correct vs. a partially correct
event. In the case of resultative constructions (e.g. fù bù qı̆ lit. ‘pay not lift-RES.’, ‘could not pay, can not afford’) we
considered the resultative particle as part of the event.

3. For the same reason as (2), the event in a nominal predicate includes all its modifiers.

With respect to scope, the current work makes a simple approximation: scope is often discontinuous, with multiple semantic
units whose translations might impact the overall translation of the scope differently. To facilitate error analysis we approximate
the scope in terms of its constituent semantic roles, here taken to be underspecified PropBank-like semantic arguments. In doing

4 Although not in the scope of the present work, previous literature have also considered the focus, i.e. the part of the scope that is directly negated or more
emphasized, as a sub-constituent of negation. Focus is the most difficult part to detect since it is the most ambiguous. For example, in the sentence ‘He does
not want to go to school by car’ the speaker might emphasize the fact that ‘He does not want to go to school by car’ or that ‘He does not want to go to school
by car’ (but he wants to go somewhere else) or that ‘He does not want to go to school by car’ (but by other means of transportation).
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so, we consider the scope as the semantic domain of negation, where the constituent elements are expected to remain in its
boundaries and to preserve their semantic role (or take an equivalent one) during translation.

The annotation process is carried out in those sentence pairs containing overt negation on the source. A second pass is then
performed to spot those pairs with overt negation only on target side, which might signal potential insertion errors (see next
section).

Example (4) illustrates our annotation scheme over the first instance of bù (not) in a Chinese source sentence.

(4) [wŏmen]scope.role

We

bùcue

not

páichúevent

exclude

[qízhōng
amidst

yŏu
there is

dăn xı̄n
worried

de
of

huì
can

lái
come

zhŭdòng
voluntarily

jiāodài]scope.role

confess

,
,

dàn
but

páo
run

de qı̆
RES

bù
not

gēng
even

duōme?
more Q

Ref: [We]scope.role do notcue [rule out]event [the possibility that some timid ones might come out and voluntarily confess]scope.role

, but would n’t many more just run away?

As shown in (4), the scope around the first main clause can be split into two arguments - a subject and an object - around the
verb páichú(rule out) so error analysis can be carried on each individually.

While annotating negation we also distinguish between functional and non-functional negation, the latter which we do not
annotate. This is the case of the second instance of bù/not in (4) where the non-functional cue is just part of the question; other
examples of non-functional negation can be question tags (e.g. It is cold, isn’t it? ) and fixed expression containing a negation
cue but having a positive meaning (e.g. Tāmen bùdébù qù cānjiā tā de hūnlı̆, ‘They had no choice but to attend her wedding’ =

They attended the wedding).

A.3.2 Quantifying the errors

A subsequent task is to define categories that are able to cover potential errors in translating negation. Our analysis aims at
applying a small set of string-based operations traditionally used in SMT to the aforementioned elements of negation. We take
into account three main operations out of the ones first introduced by (Vilar et al., 2006) and apply them to each of the three
elements of negation for a total of 9 main conditions:

• Deletion: one of the three sub-constituents of negation is present in the source Chinese sentence but not in the machine
output. This corresponds to the missing words category in (Vilar et al., 2006).

• Reordering: whether the element has been moved outside its scope. Since some semantic elements can also move inside
the scope and erroneously take a role which they did not have in the original source sentence, we define the former as out-
of-scope reordering error and the latter as same scope reordering error. The reordering category represents an adaptation
of the original word order category.

• Insertion: the negation element is not present in the source sentence but has been inserted in the machine output. Insertion
is defined here as a negation element that is aligned to a source phrase that is not a negation element. As for a scope role or
the event, this is the case of phrases that were not inside the negation scope in the source but are in the target. In the case
of the cue, it implies that a new negation instance has been created where there were none in the source. This resembles
the extra words sub-category in the incorrect words class.

Since we are not concerned with errors regarding style, punctuation or unknown words, other operations were left aside.
For a better understanding at when during the translation process and why the error occurs, we also investigated the trace

of rules used to build the 1-best machine output. This is particularly useful in the case of deletion: this may occur because a
certain word or phrase has not been seen during training (out-of-vocabulary items - OOVs) and the system is therefore unable to
translate them.

After the elements of negation have been annotated in both the source sentences and machine outputs, we use the same
heuristic as (H)MEANT (Lo and Wu, 2011) to decide whether a unit is translated correctly.

MEANT and its human counterpart HMEANT are semantic-oriented SMT evaluation metrics where the overlap between
the semantic roles around a given predicate between hypothesis and reference translation is assessed and quantified via an F1
measure. (H)MEANT works as follows: first, semantic frames are annotated in both the hypothesis output and the reference
sentence where semantic roles are associated to the frame a certain predicate is the head of; afterwards, semantic frames in the
reference are aligned to the ones in the MT output. If the predicate of a reference frame is found in the hypothesis, the metric then
proceeds to quantify the amount of overlap between the label and the content of the semantic roles. The metric also allows for
partial matches of a semantic role where the core semantics is conveyed. If a reference predicate is not found in the hypothesis,
it is considered a miss, no matter the amount of overlap between the roles associated to it.

The present work uses the same intuition but with some minor modifications. First, we score cue and scope overlap even
when there is no match between the event (which often is the head of the predicate) of the hypothesis and in the reference. This
is because we are assessing each category separately. Following HMEANT, we consider synonyms of the source negation to be
correct translations since they are taken to convey the same meaning. This also includes those elements that are negated in the
source but are rendered in the machine output by means of a lexical element inherently expressing negation (e.g. fails) or by
paraphrase into positive (e.g. bù tóng, lit. ‘not similar’→ different). Translated elements that do not contain errors which impact
the overall meaning are considered as partially correct. In the case of the event, this might be related to tense agreement or
wrong modality, whilst in the case of the scope it is usually related to the fact that secondary elements are not translated correctly
but the overall meaning is still preserved.
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As in HMEANT, we compute precision, recall and F1 measure using the following formulae where e ∈ E = {cue,event,filler}.
Normalisation is done at the text level, where we take into consideration the total number of each of these elements in the whole
test set. Unlike HMEANT, we do not normalise the number of correct fillers by the number of total fillers in the predicate.

P =
(
∑

ecorrect + 0.5 ∗
∑

epartial)∑
ehyp

R =
(
∑

ecorrect + 0.5 ∗
∑

epartial)∑
esrc

F1 = 2 ∗
P ∗ R
P + R

A.3.3 System

For the Chinese-to-English pair, we deployed the hierarchical phrase based system submitted by the University of Edinburgh
for the NIST12 MT evaluation campaign. The system was trained on approximately 2.1 million length-filtered segments in the
news domain, with 44678806 tokens on the source and 50452704 on the target, with MGIZA++ (Gao and Vogel, 2008) used for
alignment. The system was tuned using MERT (Minimal Error Rate Training, (Och, 2003)) on the NIST06 set.

Two different test sets were considered to assess differences that might be associated with genre: the NIST MT08 test
set, containing data from the newswire domain and the IWSLT14 tst2012 test set, containing transcriptions of TED talks. We
hypothesise that the difference in genre can influence the kinds of negation related error occurring during translation: as a
collection of planned spoken ‘persuasive’ talks, we expect the IWSLT’14 test set to contain shorter sentences, and on average,
more instances of negation. On the contrary, we expect the NIST MT08, where data are from the written language domain, to
contain longer sentences and fewer instances of negation. Out of the 1397 segments in the IWSLT2014 set and the 1357 segments
in the NIST MT08 set, 250 sentences for each set were randomly chosen to carry out the manual evaluation. Randomisation
means that we do not control for the presence of negation in the sample considered.

To quantify the errors in the English-to-Korean translation task, we train a hierarchical phrase based model on approximately
213000 segments, with 2848450 tokens on the source and 2440867 on the target side. The development data and the test data
contain 1500 and 2000 sentences respectively. All data was created by combining together the KAIST parallel corpora5 with
manually translated TED talks (Cettolo et al., 2012). No lemmatisation or other processes were applied to the target side; future
work might address this point. As with the Chinese-to-English task, we isolated 250 random sentences to carry out the manual
evaluation.

A.3.4 Results: Chinese-to-English: NIST MT08

The results of the manual evaluation for the NIST MT08 test set are reported in Table 6. It can be easily seen that getting the cue
right is easier than translating event and scope correctly. The cue is in fact usually a one-word unit and related errors concern
almost entirely whether the system has deleted it during translation or not. Event and scope instead are usually multi-word units
whose correctness also depends on whether they interact correctly with the other negation elements.

In those cases where the cues were deleted during translation, the trace shows that they were all caused by a rule application
that does not contain negation on the English right hand side. Also worth noticing is that, in these cases, the negation cue in
the source side is lexically linked to the event (‘bùshăo’ , ‘not few, many’) or lexically embedded in it (e.g. ‘dé bùdao, ‘cannot
obtain’). No cases of cues being deleted were found where the cue is a distinct unit. Also, no cases were found of cues being
deleted because of not being seen during training (out-of-vocabulary items).

Other cue-related errors involve the cue being re-ordered with respect to scope. In one case, cue reordering happens within
the same scope, where the cue is moved from the main clause to the subordinate. In three other cases, the cue is instead translated
outside its source scope and attached to a different event. The two cases are exemplified in Ex. (5) and Ex. (6) respectively.

(5) [tā]sem. role

He

cóngbùcue

never

[yı̄nwèi
because

wŏ
I

gĕi
to

tā
him

tí
raise

guò
ASP

yìjìan]sem. role

opinion

ér
so

[dùi
to

wŏ]sem. role

I

huài yŏuevent

have

[pìanjìan]sem. role

bias

[...]

Ref: He never showed any bias against me because i ’d complained to him [...]

Hyp: he never mentioned to him because my opinions and i have bias against china [...]

(6) [...]
[...]

jiù
then

huì
can

rènwéi
think

bùcue

not

cúnzàievent

exist

Ref: [...] people would think [that they do not exist]sub

Hyp: [...] do not think [there is a]sub

In (5) the cue never is moved from ‘have bias’ to the translation of the verb in the subordinate, while the opposite happens in (6)
where from the subordinate the cue is moved to the main sentence.

As for the translation of events, a trend similar to the translation of cues can be observed, although the percentage of deletions
is higher. The trace shows that in 3 out of 11 cases, deletion is caused by an OOV item. The remaining cases resemble the case of
the cue, insofar as no rule contains the target side event. Another problem arising with events is that some scope portions in the
source might have erroneously become events in the machine output and vice versa; we found 3 events on the source becoming
part of the scope in the target and 7 scope portions on the source becoming events in the machine output, as shown in (4).

5 Freely available at http://semanticweb.kaist.ac.kr/home/index.php/Home
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NIST MT08 test set - 250 sentences
Average Sentence Length 28
Number of negated sentences 54 21.6%
Cue per sentence ratio 1.22

Src Hyp
Cues 66 57
Events 66 57
Scope roles 98 80

R% P% F1

Correct cues 87.87 (58/66) 92.98 (53/57) 90.35
Correct events 51.51 (34/66) 50.88 (29/57)

+ Partial events 57.63 (4 + 8/66) 57.9 (29 + 8/57) 57.74
Correct scope roles 48.97 (48/98) 56.25 (45/80)

+ Partial scope roles 58.16 (48 + 9/98) 67.5 (45 + 9/80) 62.48
Deleted cues 6 (4/66)

Deleted events 16.6 (11/66)

Deleted scope roles 9.18 (9/98)

Inserted scope roles 2.5 (2/80)

Reordered cues same scope 1.5 (1/66) 1.75 (1/57)

Reordered cues out of scope 4.5 (3/66)

Reordered events same scope 4.5 (3/66) 12.2 (7/57)

Reordered events out of scope 1.5 (1/66)

Reordered scope roles same scope 8.16 (8/98) 6.25 (5/80)

Reordered scope roles out of scope 21.41 (21/98)

Table 6: Results from the error analysis of the 250 sentences randomly extracted from the NIST MT08 test set.

(7) zhè
This

yı̄ge
one

jiēduàn
stage

de
of

biăxiàn
show

shì
is

[duănqı̄
short-term

xiāoguō]sem. role

result

bù dàcue + event

not big

[...]
[...]

Ref: what this stage brings forward is : modest success in the short-term [...]

Hyp: this is a stage performance are notcue [short-term effect]event

The fact that most reordering errors are scope-related is connected to the lack of semantic-related information during the transla-
tion process, a common problem in machine translation systems. Since there is no explicit guidance as to which events the roles
in the scope should be attached to and in what order, in-scope and out-of-scope problems are to be expected.

Around 10% of scope-related errors were caused by deletion. An investigation of the trace shows that in all 9 cases, the
system has knowledge of the source words in the rule table but has applied a rule that does not translate a scope portions on the
target side.

Finally we notice that 2 of the incorrect scope roles in the hypothesis were due to the insertion of scope portions not present
in the source side. The trace shows that this kind of error is generated by rules that contain on the right hand side extra material
not related to the source side. We hypothesised that these rules might have been created during training where English words
that did not correspond to any Chinese source words were arbitrarily added to neighbouring phrases. For instance, in (8) a rule
that translates yı̆zhìyú (‘to the extent of’) into ‘to the extent of they’ is used, adding a portion to following negation scope.

(8) [...]
[...]

yı̆zhìyú
to the extent

wúfă
not possible

yú
with

oū zhou
Europe

méngguó
union

zhèngcháng
normally

zhănkāi
open

hézuò
cooperation

Ref: [...] even made it is impossible to carry out cooperation with their European allies as normal .

Hyp: [...] to the extent that [they]sem. role are unable to conduct normal with its european allies cooperation

Beside quantifying the errors for each of the negation element considered, we also analysed the kind of negation instances in
the source sentences and whether there is a 1-to-1 correspondence in the way they are rendered in the reference translations.

Out of the 66 negation instances found in the NIST ’08 test set, only 8 are instances of non-VP negation and two cases where
the adjectival VP in the source is rendered as a non-VP negation in the target. As for the sentential environment where negation
is realised (subordinate vs. main clause), we found out that there is a 1-to-1 correspondence between source and reference; this
might be due to the fact that syntactically English and Chinese are very similar.

A.3.5 Results: Chinese-to-English: IWSLT ’14 Tst2012 TED Talks

Results for the TED talks test set are reported in Table 7. It can be observed that results on all three categories are better than the
NIST08 test set, in particular for the F1 measure of correct events and scope. A reduction in the percentage of reordered scope
roles on the overall number translation errors might be connected to shorter sentences in TED talks then in the NIST test set and
with less chance of a long range reordering.

We can also observe that genre has an effect on negation cues; despite sentences being shorter, we found more negative
instances in the TED talks.

As for the errors in the NIST08 test set, we analysed the trace output after the completion of the translation process to see
whether deletions were caused by incorrect rule application or by the presence of OOV items not seen during training. Out
of 7 cases of cue deletion, 5 of event deletion and 4 of scope role deletion, only one was caused by the presence of an OOV
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vocabulary item in the source. However, as shown in (6), the OOV error is generated by a wrong segmentation of two elements
in the source, bùzhı̄ and zĕnme, which end up being collapsed in a single word unit.

(9) bùzhı̄zĕnme
do not know how

yòng
use

wŏmen
we

bù
not

néng
be able

wánquán
completely

lı̆jiĕ
understand

de
of

fāngshi
method

[...]
[...]

Ref: ways we cannot fully understand that we don’t know how to use [...]
Hyp: was converted to the way we cannot fully understand [..]

This seem to exclude OOV items as a problem in translating negation for the present system and what we are left with is a
problem of negative elements not correctly reproduced on the target side of the rules.

Finally, we have found two cases of insertion, one cue and the other event related. Overall, cases of insertion are rare and
do not constitute a real problem for the system here considered. In general, as for event and scope, a rule application that does
not contain one of these two elements on the Chinese left hand side but inserts it in the English right hand side might be just
fortuitous. As in the case of (8), it might have been that a rule containing extra material was preferred because a better fit in that
specific context (given that a LM part of the scoring function of a SMT system). Insertion of the cue deserves instead a better
investigation. The results shows that deletion is sometimes associated with rules whose Chinese (left-hand) side contains a cue
whilst the English side does not. This is most certainly caused by the training process where rules are extracted according to
what portion of the source Chinese sentence is aligned to what portion in the target English sentence. If an Chinese sentence
contains negation but the English does not, a rule learnt from that pair might learn that a negation cue corresponds to something
positive. This should theoretically happen the other way around and if so, the application of these rules should lead to insertion.
Further analysis of the rule table and the sentences used in training might clarify this point.6

IWSLT14 tst2012 TED talks - 250 sentences
Average Sentence Length 18
Number of negated sentences 61 24.4%
Cue per sentence ratio 1.13

Src Hyp
Cues 69 54
Events 69 52
Scope roles 103 83

R% P% F1

Correct cues 88.4 (61/69) 98 (53/54) 92.95
Correct events 69.56 (48/69) 76.92 (40/52)

+ Partial events 71.73 (48 + 3/69) 79.8 (40 + 3/52) 75.55
Correct scope roles 62 (64/103) 77 (64/83)

+ Partial scope roles 63.59 (64 + 3/103) 78.9 (64 + 3 /83) 70.42
Deleted cues 10.14 (7/69)

Deleted events 7.2 (5/69)

Deleted scope roles 3.8 (4/103)

Inserted cue 1.8 (1/54)

Inserted scope roles 1.2 (1/83)

Reordered events same scope 7.2 (5/69) 1.9 (1/52)

Reordered events out of scope 5.7 (4/69)

Reordered scope roles same scope 1.9 (2/103) 7.2 (6/83)

Reordered scope roles out of scope 12.62 (13/103)

Table 7: Results from the error analysis of the 250 sentences randomly extracted from the IWSLT2014 test set.

A.3.6 Results: English-to-Korean

The result of the error analysis for the English-to-Korean translation task are shown in 8. At first glance we notice a substantial
difference between these and the results for the Chinese-to-English tasks where the three categories shows similar scores. In
particular cue translation shows a big drop in translation performance. The main reason for this is that English and Korean
substantially differ in the way negation is expressed, which also justifies the presence of partial and wrong cues. The majority
of translation errors classified as partial cue are cases where the cue was inflected in the wrong way (as in Ex. 10) but there are
also other cases where the system failed to reproduce double negation on the target side (as in Ex. 11).

(10) a. Src: Which is+pres notcue what you originally intend
b. Hyp: geos-eun

Thing.TOP

wonlae
once

gaecheogha-neunde
to pioneer.CON

anieossseubnidacue.
not-to-be.PAST.HON

(11) a. Src: No onecue was allowed to speak about movement in plants before Charles Darwin
b. Hyp: Chalseu

Charles Darwin.LOC

dawin-e
before.TMP

jeon-e
no one

amudocue

move.NZR.ACC

umjig-im-eul
plants.LOC

sigmul-e
regarding

daehae
speak.POT.HON

malhal su iss-eossseubnidaevent .

6 Given the poor quality of the reference translations, we could not carry out an analysis of the kind kind of negation instances and the tendencies in their
translation for the present test set.
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English-to-Korean: KAIST + TED - 250 sentences
Average Sentence Length 12
Number of negated sentences 31 12.4%
Cue per sentence ratio 1.06

Src Hyp
Cues 33 31
Events 33 22
Scope roles 50 34

R% P% F1

Correct cues 42.42 (14/33) 45.16 (14/31)

+ Partial cues 51.51 (14 + 6/33) 54.83 (14 + 6/31) 53.11
Correct events 36.36 (12/33) 54.54 (12/22)

+ Partial events 39 (12+ 2/33) 59 (12 + 2/22) 46.95
Correct scope roles 38 (19/50) 55 (19/34)

+ Partial scope roles 41 (19 + 3/50) 60 (19 + 3 /34) 48.71
Deleted cues 12 (4/33)

Deleted events 12 (4/33)

Deleted scope roles 4 (2/50)

Inserted cue 9 (3/31)

Inserted events 13.6 (3/22)

Inserted scope roles 17.6 (6/34)

Reordered events out of scope 30 (10/33)

Reordered scope roles out of scope 40 (20/50)

Reordered scope roles same scope 2 (1/50) 2 (1/50)

Table 8: Results from the error analysis of the 250 sentences randomly extracted from the English-to-Korean test
set.

Example (10) shows two main features of Korean negation: (i.) in a nominal predicate, negation is expressed by means of
a negative copula, unlike English where the copula and negation cue are separate words; (ii.) verbal negation cues can be
inflected. Here, the negative cue takes the wrong tense and it is therefore marked as partially correct. The hypothesis contains
in fact anieossseubnida (+past) instead of anibnida (+pres). On the other hand, in (11), even though the negative pronoun is
correctly translated, the system fails to negate the verb as well (it should be malhal su eobs-eossseubnida instead of malhal su
iss-eossseubnida) . Problems in rendering double negation, where not present in the source, as also observed in Popovic and
Arcan (2015), are expected given that the system is completely negation-agnostic and this phenomena cannot be captured by
translation rules only.

Furthermore, unlike the Chinese-to-English pair, where cue - related errors were mostly related to deletion, in the Korean
translations there were 8 instances of wrongly translated cues. Again, this is due to the fact that, while in English and Chinese
there exists one predominant cue to express standard verbal negation (not and bù respectively), Korean has many, where the
choice depends on associated eventive (nominal, existential, etc.) and aspectual features (potential, permission, experiential,
etc.). These kind of errors are exemplified in (12) and (13).

(12) a. Src: [...] “OK, I didn’tcue really see that"
b. Hyp: [...]

[...]

“geulae
“Sure

,
,

naega
I.SUBJ

boji
see.FIN-PART

moscuehaessseubnida"
can-not.PAST"

.

.

(13) a. Src: She reminded me that I hadn’tcue written to Mother.
b. Hyp: geunyeoneun

That woman.TOP

je
my

eomeoniga
mother.SUBJ

jega
I.SUBJ

sseun
to write.REL.PAST

jeog-i
CL.SUBJ

eobs-eoss-geodeun-yocue

not-to-have.PAST.FIN-PART.POL

In (12), a wrong cue was chosen where Korean distinguishes between negation in potential form (equivalent to the English can
not) where the cue mos is used, and plain negation (as in the English do not) where the cue an is used. In (13) instead a form
expressing the lack of a certain experience (-eun jeog-i eobs-eoss-geodeun-yo, same as the English ‘I have never V+ed’) is
incorrectly used in lieu of a standard negative form.

Beside some instances of cue deletion, that, as for the English-Chinese pair, are associated with wrong rule application and
not with the presence of OOV items, 3 instances of cue insertion were found inspecting the Korean translations, where the source
was a positive sentence. Using the trace of rule used during decoding, we verified that those are all due to the incorrect rule
extraction during training, where a positive source phrase (or hierarchy of phrases) is associated with a negative one. This is
shown in (14),

(14) a. Src: Squad cars converged on the scene of the crime.
b. Hyp: salam-ege

People.DAT

chaleul
car.ACC

converged
converged

beomjoehyeonjang-eun
scene of the crime.TOP

geuga
that.SUBJ

hanbeondo
not even once

mosgabon
can not go.REL.PAST

gos-ijiman
place to be.CON

geuui
that.POSS

insaeng-eul
existence.ACC

yeong-wonhi
forever

bakkwonoh-eun
change.RES.PAST

.

where the source side the scene of the crime was directly into the target phrase beom joehyeon jang-eun geuga hanbeondo
mosgabon gos-ijiman. Insertion errors can be attributed in the case to both data sparsity and the fact that we have not performed
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any lemmatisation or morphological decomposition of the Korean side prior to alignment.
Event and scope related errors have similar patterns to the Chinese-to-English examples seen above. We have found that

the biggest source of errors is movement outside of negation scope during translation. Out-of-scope reordering errors for both
elements outnumber those errors where the element is kept inside the right scope but it is simply translated incorrectly (10 vs.
5 for the event and 20 vs. 6 for the scope). It is also worth reminding that we are considering here as out of scope also those
elements that are translated into the target language when the cue is deleted (and a negation scope is therefore absent).

Finally, we found a few cases of event and scope role insertion associated to the appearance of a negative instance on the
target side where the source side does not contain any. This is the case of (15), where the mistranslation of a positive sentence
into a negative one leads to the appearance of an event and scope roles.

(15) a. Src: I can say with certainty that this is true.
b. Hyp: [jeoneun]scope.role

I.TOP

[igeos-i]scope.role

this thing.SUBJ

[sasil-ilaneun
truth.to-be.PART.REL.PRES

geos-eul]scope.role

thing.ACC

[hamkke]scope.role

together

[malhal
to speak.REL

su
CL

eobsdacue]event

not-have.PL

.

When investigating the kind of negation instances for the English-to-Korean sentence pairs, out of the 33 negation instances
found in the test set, we found that only three are of a negation outside a VP. This is very similar to what we observed in the
case of the Chinese-to-English translation task. Analysing whether both source and reference translation realise the negated VP
in the same way, we found that only in 2 cases a verbal VP is rendered by a nominal VP and 2 other cases where a verbal VP is
translated using a positive paraphrase, leaving therefore 26 cases of 1-to-1 correspondence between the type of VP source and
reference translation realise negation in.

Finally, we also found a strong 1-to-1 correspondence when analysing the sentential environment negation is realised in both
source and reference translations. We found in fact only two cases of source-side negation in a subordinate that it is promoted to
the main clause in the reference translation.

A.3.7 Discussion

Given the results for both translation tasks, there are a few point worth highlighting. First, the choice of language pair influence
translation performance and the errors observed. Translating into languages that express negation morphologically or apply
morphological operations to the cue adds more variables to the problem of translating negation. Second, for distant language
pairs (such as the ones we have analysed here) there is a problem with the reordering of elements. This effects the scope of
negation in particular whose semantic sub-constituents are translated outside of it.

Finally and more in general, we have seen how applying a small set of string based operations on a finite class of semantic
elements allowed us to analyse the translation of textual negation throughly.

To summarise the results, for each of elements considered we might want to take into consideration that:

• cue: deletion and choice are the most prominent problems for this element. Deletion is not desirable because if the cue is
absent, the truth value of the statement is reversed, hence we need a way to ensure that is present. Choice both refers to the
type of cue and the morphological features it has to be specified for. This was evident especially in the Korean translations,
where the choice of a correct cue and its inflection is not a trivial task.

• event: we have observed all categories of errors for the event, including deletion, out-of-scope movement and incorrect
translation. We have also seen that deletion is not caused by OOV items in the majority of cases, which then leads to the
conclusion that it if the event is absent is mainly because translation rules haven’t promoted it correctly.

• cue & event: given that most of the negation instances observed are situated inside a VP and likely to be translated inside
a VP in the target language as well, the issues related to the translation of cue and event can be brought together. Given
the error observed, our goal is to ensure that we reproduce a predicate containing cue (or better, the correct cue) which is
positioned correctly in a constituent dominated by the right event head. This is not a trivial task in both target languages
we have considered: English requires that negation is inserted correctly inside a chain of auxiliaries or modals that in turn
take on certain morphological features, whereas Korean requires that the cue is correctly placed in the chain of morphemes
attached to the main verb (when morphological).

• scope: the main problem we have observed is out of scope reordering caused by rule application that are agnostic to clause
boundary and predicate frames.

A.3.8 Chapter summary and future work

In the present section, we have presented a manual error analysis of the translation output with regards to negation. String-based
operations (deletion, insertion and reordering) were used to score the translations of the three elements of negation introduced
in §2 via a precision-recall based metric. Output from a Chinese-to-English and an English-to-Korean shown that language
similarity in expressing negation matters, especially in relation to the translation of the cue. Scope re-ordering was found to be
a consistent problem in both systems; this might be due to unconstrained rule application in HIERO systems. Finally, we have
found that for the test sets used, the majority of negation instances are placed around a predicate VP.

A question related to the error analysis is whether it is possible to automate it. Given that we cannot rely on human judgement,
an automatic error analysis will have to take into consideration the reference translation instead of the source. Understanding how
much the machine output differs from the gold standard reference overlaps with the question of how to automatically evaluation
the translation output.
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A.4 Automatic evaluation of negation related errors in translation
Given the manual error analysis sketched in §3, we propose the following plan for an automatic semantic evaluation of negation
related errors in translation:

• Automatically detect cue, event and scope in the reference translation

• Try to adapt this automatic detection model to other languages

• Automatically score the overlap between cue, event and scope in the reference and the machine output

The following section will cover 1) and partially 2). We leave 3) for future work.

A.5 Automatic negation detection
If the task of the present project is to guide the system to avoid as much as possible the errors mentioned in §2, we have first of
all to be able to recognise on the source side the elements of negation to which the errors are related to.

Detecting these elements manually is time-consuming, especially if experiments on different test sets and language pairs are
to be carried out. Therefore, it would be useful to have a method to automatically detect these elements that can scale to different
domains and different languages.

In this section, the possibility of leveraging available training data annotated for negation in English is investigated. The
problem of automatically detecting negation is framed as a supervised machine learning task, the output of which can then
be projected onto a target foreign language in the presence of aligned parallel data. Given that previous literature has already
explored the problem of detecting negation in English texts (§4.1), we will try to re-implement a pre-existing algorithm for
negation detection (§4.2) and port them to the newswire domain (§4.3) where parallel data is available to perform annotation
projection.

A.5.1 Previous work

Previous literature on automatic negation detection has focused mainly on its use in sentiment analysis and in the biomedical
domain. To our knowledge, all these works have tackled the problem using either a rule-based approach based on NegEx
(Chapman et al., 2001) and its extensions or supervised machine learning methods.

NegEx is a simple and fast rule-based algorithm that is able to detect the scope of a negation cue in the context of medical
referrals. Here, scope is intended as one or more NE that are often associated with a disease or symptom, such as chest pain in
the sentence ‘The patient denied experiencing chest pain on exertion’. The task NegEx was initially applied to was to recognise
whether a NE is negated or not. All these NEs are part of a precompiled list of disease and symptoms.

Since its basic implementation, NegEx has been extended and adapted to other languages. (Harkema et al., 2009) extends the
scope of NegEx to match information about the temporal context of the disease or symptom, whether these are factual or not and
whether they concern the patient or a third person. (Chapman et al., 2013) tries to extend the NegEx lexicon to languages other
than English by translating the NegEx cue dictionary in three European languages (French, German and Swedish) and create
knowledge representations based on multi-lingual ontologies. Despite its extensions, NegEx has however been restricted only to
the domain of medical records, with specifically tailored rules; moreover the process of porting the algorithm to other languages
has been carried out by means of manual translations, whereas we want to explore the option of automatising the process.

Until very recent all supervised learning approaches were relying on the BioScope corpus (Szarvas et al., 2008) and other
few resources in the biomedical domain. The BioScope corpus is a collection of clinical texts (e.g. radiology reports), biological
reports and scientific abstracts annotated for both negation and hedging. The annotation only takes into consideration the cue
with its related scope; there is no separate annotation of the event, which is considered as part of the scope. An excerpt from the
BioScope corpus is shown in (16).

(16) <sentence id=“S1.15">Our result <xcope id=“X1.15.3"><cue type= “speculation" ref=“X1.15.3">suggests </cue>that
<xcope id= “X1.15.2" >the unknown amino acid encoded by stop codons does <xcope id= “X1.15.1"><cue type
=“negation" ref =“X1.15.1 " >not </cue>exist </xcope>, <cue type =“speculation" ref =“X1.15.2" >or </cue >its
phylogenetic distribution is rather limited </xcope ></xcope >, which is in agreement with the previous study on tRNA.
</sentence>

It can be observed in (16) that what we consider as scope in the error analysis (underlined above) is not considered as such in
the BioScope corpus; this applies to all elements outside the negated VP, which are not considered in the scope of negation (al-
though, erroneously, ‘does’ is excluded from the scope as well). Moreover the cue is considered as part of the scope as opposed
to separate from it.

In sentiment analysis, (Councill et al., 2010) has successfully used the BioScope corpus to both train and test a negation
detection algorithm that is then inserted as part of a sentiment recognition system, showing considerable improvement in dis-
criminating between positive and negative polarity. On the other hand, other works (Ballesteros et al., 2012; Zou et al., 2013)
focus purely on detecting the scope of negation using deep syntactic features. Finally, (Prabhakaran and Boguraev, 2015) high-
light the inconsistencies in the BioScope annotations and proposes a mapping from annotations to predicate-argument structures
before carrying out the prediction task.

If the NegEx algorithm and the BioScope corpus were developed with the aim of automatically extracting negation related
information in the biomedical domain, the *SEM 2012 shared task represented a first attempt to detect negation outside this
domain. In particular, extracts from Conan Doyle’s “Sherlock Holmes” were annotated in CoNLL format for cue, scope and
event according to the guidelines introduced in §2. An excerpt from the annotation is presented in (17).
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(17) baskervilles01 8 0 Holmes Holmes NNP (S(S(NP*) _ _ _
baskervilles01 8 1 was be VBD (VP* _ _ _
baskervilles01 8 2 sitting sit VBG (VP* _ _ _
baskervilles01 8 3 with with IN (PP* _ _ _
baskervilles01 8 4 his his PRP$ (NP* _ _ _
baskervilles01 8 5 back back NN *)) _ _ _
baskervilles01 8 6 to to TO (PP* _ _ _
baskervilles01 8 7 me me PRP (NP*))))) _ _ _
baskervilles01 8 8 , , , * _ _ _
baskervilles01 8 9 and and CC * _ _ _
baskervilles01 8 10 I I PRP (S(NP*) _ I _
baskervilles01 8 11 had have VBD (VP* _ had _
baskervilles01 8 12 given give VBN (VP* _ given given
baskervilles01 8 13 him him PRP (NP*) _ him _
baskervilles01 8 14 no no DT (NP(NP* no _ _
baskervilles01 8 15 sign sign NN *) _ sign _
baskervilles01 8 16 of of IN (PP* _ of _
baskervilles01 8 17 my my PRP$ (NP* _ my _
baskervilles01 8 18 occupation occupation NN *)))))) _ occupation_
baskervilles01 8 19 . . . *) _ _ _

All the sentences in the story are annotated with story id, sentence id, word id, surface form, lemma, POS tag and constituent
fragment. Additionally, if the sentence is negated each negation instance is represented by three column containing cue, scope
and event respectively. The fact that the event (given in (17)) is included in the scope explains why a word-event is also present
in the second column.

The evaluation of the automatic recognition task is precision and recall based. The task is to correctly identify the negated
sentences and correctly detect cue, event and scope. Given the goal of the task, all of the system submitted for the scope resolu-
tion task7 attempted first to detect the cue and given this, to then detect scope and event. In particular CRFs and SVMs, making
use of syntactic (both constituent and dependency based) features, were shown to lead to the best results in a supervised machine
learning setting. Three of the systems submitted, one of which we re-implement in the next section, show different strategies
on how the scope can be predicted: (Read et al., 2012) observed that the scope often matches a syntactic constituents and it is
therefore a matter of choosing the right constituent that can capture the scope of a particular sentence. For this reason, they use
discriminative ranking on candidate constituents to choose the most appropriate to capture the scope of a negation instance; on
the other hand, (Lapponi et al., 2012) used features extracted from a dependency parse to detect elements in the scope, such as
the dependency path from a given word to the cue and the parent and the children tokens and dependency labels (see next section
for more details); (Basile et al., 2012) tried instead to detect the the scope in a DRS representation (Discourse Representation
Structure), including all arguments around a negated item. It is worth pointing out that no matter it is constituents, dependency
structures or semantic representations we are taking into consideration, there is an common element of ‘cohesiveness’ where the
elements in the scope are likely to be associated with the boundaries of the sentential environment the cue is positioned in.

Beside English, there were also a few attempts in automatically detecting negation in Chinese texts. (Hao-Min et al., 2008)
designed a negation detection algorithm based on syntactic patterns; similarly, (Jia et al., 2014) implemented an FSA for au-
tomatic recognition of negation structures in Chinese medical texts, using a list of manually defined cues and the syntactic
structures they appear in.

The problem of annotating languages where no manually annotated training data is available resembles very closely the task
of building SRL systems in low-resources languages. We are in fact faced here with the task of having a strong supervised model
on a language (that we denote here as the source language) and wanting to exploit parallel data to transfer this knowledge to
a foreign language (the target language). Previous work on SRL have proposed three different approaches to the problem: (i.)
annotation projection; (ii.) direct model transfer and (iii.) unsupervised learning (which we will leave aside for the moment).

The intuition behind the annotation projection approaches is that, in the presence of either manually or automatic aligned
parallel data, we can project the annotations from the source onto the target language. (Padó and Lapata, 2005) were the first
to use word-alignment information for cross-lingual projection of FrameNet annotations from English onto German. However,
given that word alignments are noisy and that certain words might not be aligned, generating discontinuities that are not allowed
in SRL, projection is enhanced using syntactic constituent information as well. To this regard, (Padó and Lapata, 2006) casts
the problem of using syntactic constituents in SRL annotation projection as weighted graph optimization, where we want to find
the best alignment between source and target constituents. Although experiments were limited to a single language pair and
to those sentences where frames match cross-linguistically, the possibility of transferring roles by means of a simple heuristic
is interesting. On the other hand, (Van der Plas et al., 2011) attempts to remedy to incorrect word alignments by first using
word-based projection to transfer semantic information to the target language (in this case French) and then use this, along with
a dependency parse on the target side, to train a joint syntactic-semantic parser.

In the direct model transfer (Kozhevnikov and Titov, 2013) approach, a model is built on the annotated source language and
directly applied to the target language. Direct application implies that the model features are abstract enough to be applicable to
both languages. (Kozhevnikov and Titov, 2013) experiments with different feature representations such as universal POS tags,
unlabeled dependencies and cross-lingual word mapping. In this last case, we are able to preserve token-related features by either
mapping target tokens to source tokens (glossing) or mapping both to a cross-lingual word cluster. Results show performance
comparable to the annotation projection approach but with no need for parallel data.

7 The shared task also included a focus resolution task that we are not considering since outside the scope of the present work
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List of English lexical negation cues List of English morphological cues
nor im-

neither un-
without dis-
nobody in-

none non-
nothing ir-
never -less

not (n’t)
no

nowhere
non

Table 9: List of English lexical and morphological negation cues

A.5.2 A pipeline for automatic negation detection

Given that algorithms for automatically detect negation already exist, the most sensible starting point would be to re-implement
one of them and test its performance on the task at hand, i.e. detect the elements of negation in the newswire domain.

The reason why we chose to re-implement (Lapponi et al., 2012)’s system is mainly because dependency parse features
have often proved useful when dealing with negation (see for example (Prabhakaran and Boguraev, 2015) and (Fancellu and
Webber, 2014)); moreover, unlike, constituent based algorithms (Read et al. (2012)), working with dependency parses requires
less engineering while still being applicable to a wide range of languages.

As introduced in the section above, (Lapponi et al., 2012)’s system is based on two sequential classifier, one for cue and the
other for scope detection.

Cue detection is a binary classification task: negation cues are a closed class and the task is to identify whether a target word
belong to this class or not. This approach applies to both lexical and morphological negation in English. As for lexical negation,
we start from a finite set of elements (shown on the left in 9) and try to classify whether a word is a true cue or an instance
of non-functional negation (e.g. not in question tags). In the case of morphological negation, we look for words containing a
sub-string that can potentially be an affix expressing negation (such as im- in impossible, see liston the left in 9) and our task is
not to classify as negation-bearing those words containing a substring that is the same as the negation cue but has no negation
related meaning at all (as the im in impostor). To carry out this task, an SVM classifier is trained using the set of features reported
in (18).

(18) • Lexical cues:
– Lemma n-grams to the left of cue (up to 5-gram)
– Lemma n-grams to the right of cue (up to 5-gram)
– Token n-grams to the left of the cue (up to 5-gram)
– Token n-grams to the right of the cue (up to 5-gram)

• Morphological cues:
– Lemma n-grams to the left of cue (up to 5-gram)
– Lemma n-grams to the right of cue (up to 5-gram)
– Token n-grams to the left of the cue (up to 5-gram)
– Token n-grams to the right of the cue (up to 5-gram)
– Backward stem character n-grams
– Forward stem character n-grams
– Frequency of the stem in the training corpus (cues excluded).
– Affix
– POS tags

Some of the features in (18) tries to capture the context around the word; for instance, we will expect the present of a backward
unigram does and a forward bigram (it, ?) to help classify those non-functional true negatives in question tags.

An additional set of features targets directly the disambiguation of words bearing morphological cues using the stem, i.e.
the token after the potential negation morpheme has been stripped (e.g. possible from impossible). If the morpheme is a real
negation cue that derives a word bearing negative meaning from a positive one, it is likely that the stem appears on its own in the
training corpus. Hence, we take away all the cues from the training data and calculate the frequency of the stem in it. Following
this intuition, if we strip im-, a real negation cue, from impossible, the stem possible is very likely to appear on its own in the
‘negation-less’ copy of the training corpus. On the other hand, in the case of a word like underground, which contains a false
negation morpheme un-, its stem derground is not a real word and therefore very unlikely to appear in the training corpus. For
the same reason, stem character n-grams, both beginning-to-end (forward) and end-to-beginning (backwards) are considered
as well. Finally, the cue detection algorithm also includes a post-processing component responsible for detecting multi-word
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negation cues that do not need disambiguation and can therefore be detected by a simple string-matching lookup.
The output of cue prediction gives us a way to detect which are the negated sentences and how many instances of negation

appear in a sentence. Given the cue, we can then detect the scope and the event in it. Unlike the cue detection task where
we had to discriminate real vs. false cues, the scope (and jointly event) detection task is an IOB (Inside-Outside-Beginning)
classification problem where we want to classify a target token as whether part of a negation scope or not. In order to carry
out the task, a CRF (Conditional Random Field) is trained using the set of features reported in 10. If the set of general features

General features
Token

Lemma
PoS unigram

Forward token bigram and trigram
Backward token bigram and trigram

Forward PoS trigram
Backward PoS trigram

Lexicalized PoS
Forward Lexicalized PoS bigram

Backward Lexicalized PoS bigram
Constituent

Dependency relation
First order head PoS

Second order head PoS
Lexicalized dependency relation

PoS-disambiguated dependency relation
Cue-dependent features

Token distance
Directed dependency distance

Bidirectional dependency distance
Dependency path

Lexicalized dependency path

Table 10: List of the features using to train the CRF model for scope detection as appearing in (Lapponi et al.,
2012, p. 322)

encode the environment around a given token, the cue-dependent features try to use the cue as an ulterior guidance towards
tracing the boundary of the scope. Both dependency distance features represent how far in the dependency graph is the target
element from the cue; on a string level, this is calculated by the token distance.

(Lapponi et al., 2012)’s model is implemented using the Wapiti toolkit (Lavergne et al., 2010), with default settings. Here,
we use the Mallet toolkit (McCallum, 2002) with default settings. The output classes considered from this task are O (outside
the scope), S (inside the scope), B (beginning of the scope), E (event) along with C (lexical cue) and MC (morphological cue),
predicted in the previous task. (Lapponi et al., 2012) opted to separate lexical and morphological cues given the different context
they appear in.

The scope classification task also includes a post-processing step that deals with the fact that a sentence might contains
multiple negation instance, sometimes nested (as in the case of a negated subordinate inside a negated main clause, as in [She is
not coming because [her dad is not feeling well]]), while the CRF classifier just assigns a inside vs. outside value to a test token.
In order to solve potential nesting (in this case whether cue B is nested in the scope of cue A), (Lapponi et al., 2012)(p. 324)
uses the following heuristics:

• Cue B is to the right of A.

• There are no tokens labeled with S between A and B.

• Token distance between A and B does not exceed 10.

Once the cue hierarchy has been decided, each token that has been predicted as been part of a scope is assigned to a cue according
to the heuristics below.

• Assign each token T to the closest negation cue A with no S-labeled tokens or punctuation separating it from T.

• If A was found to be negated by cue B, assign T to B as well.

• If T is labeled with E by the event classifier, mark it as an event.

The result for the cue classification tasks are reported in Table 11. First, it is interesting to observe how disambiguating between
cues achieves a high F1, with detection of lexical cues performing slightly higher than the disambiguation of morphological
negation. If we combine the prediction of lexical and morphological cues and add post-processing rules to automatically detect
multi-word cues, we achieve a final F1 score of 0.92. An analysis of the confusion matrices for both test sets reveal that in
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P R F1

Cardboard Lexical 0.95 0.94 0.93
Morphological 0.92 0.93 0.92

Circle Lexical 0.94 0.94 0.93
Morphological 0.91 0.91 0.91

Average Lexical 0.945 0.95 0.93
Morphological 0.915 0.92 0.915

Table 11: Results for cue classification task on both tests sets released during the *SEM2012 task.

P R F1 B E O S

Cardboard

Beginning 0.79 0.73 0.76 79 1 24 4
Event 0.48 0.62 0.54 0 45 8 19

Outside 0.98 0.99 0.99 10 2 9089 66
Scope 0.85 0.74 0.79 11 46 122 515

Circle

Beginning 0.73 0.69 0.71 66 1 24 5
Event 0.49 0.59 0.54 1 46 9 22

Outside 0.97 0.99 0.98 13 4 7978 75
Scope 0.80 0.66 0.72 10 41 164 422

Average

Beginning 0.76 0.71 0.735
Event 0.485 0.605 0.54

Outside 0.92 0.93 0.985
Scope 0.825 0.70 0.755

Table 12: Results for scope classification task, along with the confusion matrices, of both test sets released during
the *SEM2012 task

the case of lexical negation for both test sets, classification errors involves only false positives (7 out of 12 true negatives), that
is those non-functional cues that do not carry a negative meaning. In the case of morphological negation, we observe instead
both false positive and false negative. Part of the errors associated with this class are related to words that do not contain a
negative morpheme but exist as a relatively high-frequency word if stripped of the substring resembling a negation morpheme
(e.g. ‘inland’); on the other hand, other words that contained a negation morpheme were not classified as true positives because
the stems is a low-frequency word and therefore not present in the training data as separate word (e.g. ‘unframed’).

The result for the scope classification task are reported in Table 12. In terms of F1 we notice a good performance for the
scope token recognition but not for the event recognition (when the event is not part of a word with a negation morpheme). It is
worth noting however that for the task of scope classification an investigation of the confusion matrix is important, since output
from the B class are in reality a subcategory of S and S outputs that are classified as E are still to be considered correct (because,
as we said, the event is included in the scope). For this reason we re-ran the classification task without the B and the E class.
Results are reported in Table 13. It can be observed that by making the task a binary classification (whether the token is inside
or outside the scope) the F1 measure for the S category reaches a solid 0.85 on average. As for the event, which is part of the
scope, we hypothesize that its detection can be performed taking the output of the scope detection as input, as so to assure that a
token outside the scope is not picked. This will be addressed by future work.

The results shown so far only report the accuracy in classifying whether a token is inside or outside the scope. As shown
above, if these results are positive for those sentences containing only a single instance of negation or multiple instances that are
not nested, in the case of sentences with nested negation, there exists the extra task of assigning the scope to the right cue. To
report the results of this task using the heuristics of (Lapponi et al., 2012) introduced above, we use the evaluation script released
during the *SEM2012 shared task for the scope evaluation task. The script evaluates whether a full scope is captured correctly,

P R F1 O S

Cardboard Outside 0.99 0.99 0.99 9065 101
Scope 0.88 0.88 0.88 106 768

Circle Outside 0.98 0.99 0.98 7974 95
Scope 0.86 0.77 0.82 183 627

Average Outside 0.985 0.99 0.985
Scope 0.87 0.825 0.85

Table 13: Results for scope classification task, along with the confusion matrices, of both test sets released during
the *SEM2012 task when only two output classes are considered
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P R F1 O S

Cardboard Outside 0.98 0.98 0.98 9076 90
Scope 0.89 0.87 0.88 116 758

Circle Outside 0.98 0.98 0.98 7928 142
Scope 0.81 0.79 0.80 172 639

Average Outside 0.98 0.98 0.98
Scope 0.85 0.83 0.84

Table 14: Results for scope classification task, along with the confusion matrices, of both test sets released during
the *SEM2012 task when only token and POS features are retained.

P R F1 O S

Cardboard Outside 0.98 0.98 0.98 9023 144
Scope 0.83 0.83 0.83 151 723

Circle Outside 0.97 0.97 0.97 7863 207
Scope 0.73 0.73 0.73 222 589

Average Outside 0.975 0.975 0.975
Scope 0.78 0.78 0.78

Table 15: Results for scope classification task, along with the confusion matrices, of both test sets released during
the *SEM2012 task when only POS features are retained.

also taking into consideration whether we match it to the correct cue or not. The F1 measure for the full scope condition is 65.67
with a precision and a recall of 90.41 and 51.56 respectively. This is around 7 points lower than the original implementation;
there might be part of the scope assignment implementation that needs revisiting, which we will address in future work.

So far, we have showed that recognising the cue and the elements of the scope in sequential fashion leads to a relatively high
F1 measure on in-domain data. Before assessing whether such results also hold for out-of-domain data, we show the results
of an ulterior experiment we carried out. The question we wanted to address is whether a simpler model that would show a
similar performance could be created; while addressing this question, we also tried to explore the possibility of moving towards
language-independent features, that would make the model directly applicable to other languages. To this purpose, we started
by performing feature ablation and considering only token and POS related features. Results are shown in Table 14. Although
there is a slight drop in performance, the F1 score for scope detection is still above 0.80, showing how token and POS related
information are essential in defining the boundaries of a negation scope. We then proceeded in considering POS-related features
only; considering that universal POS sets are available for a large number of languages, if the performance of the classification
task is still good, it might be worth considering to train a POS-based model for English and directly apply it to other languages.
The results for this experiment are shown in Table 15. When analysing the results for the classification task using POS-based
features only, performance is still around 0.80 as measured by the F1 score, showing that the core of the classification task is
done in terms of POS tags.

A.5.3 Automatic negation detection on newswire data

Going back to the original problem, we are trying to build a detection algorithm that is able to scale across domains and
language pairs. Given that machine translation often makes use of newswire and web data, it is worth investigating how a
negation detection algorithm performs on these new domains. Moreover, given the availability of parallel data, some of which
are manually aligned, it is possible to go beyond automatic annotation and project negation related information from a language
to another. To this purpose, the negation detection pipeline shown in the previous section is applied to the English-to-Chinese
GALE manually aligned parallel data (LDC2012T24). The advantage of using a manually aligned data is two-fold: cross-lingual
projections do not suffer from any noise derived from automatic alignment; manual alignment can be used as a benchmark to
assess the performance of the projection task using automatic alignment heuristics.

As a first experiment we train our automatic negation detection system on the Conan Doyle corpus and test it on the English
side of the GALE Chinese-English manually aligned parallel corpora. Before the annotation process, the 4842 sentences had
tokenised and formatted into ConLL format; tokens were lemmatised, part of speech tags and constituent fragments extracted
using the Stanford CoreNLP toolkit (Manning et al., 2014). We detect cue and scope using the classifiers shown in the previous
section with the entire set of features (token, POS and dependency based); a gold standard for evaluation was finally created by
correcting the classification output. We carried out this correction on the first 1000 sentences in the corpus, following the same
guidelines used during the manual error analysis. The results in Table 16 refers to this subset of 1000 sentences.

A.5.4 Chapter summary and future directions

In the present chapter, we have explored the issue of automatically detecting the sub-constituents of negation in the source
sentence in order to discern which elements we have to guide the translation of. We have shown that by re-implementing
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P R F1 gold system tp fp fn
Cue 86.38 92.69 89.42 301 333 279 44 22

Scope tokens 77.17 72.46 74.74 2556 2400 1852 548 704
Full scope (cue match) 74.23 40.07 52.05 302 326 121 42 181

Full scope (no cue match) 75.29 42.38 54.23 302 326 121 42 174

Table 16: Result for automatic detection of negation on the English side of the GALE English-Chinese parallel
corpora.

algorithms previously developed for English it is possible to obtain good performance on cue and scope detection. We have
also looked at the contribution of different features in the scope classification task in order to assess the contribution of each.
By means of feature ablation, we have observed that the main contribution comes from POS-tag related features, while adding
dependency features on top helps improving the overall performance. Finally, the issue of testing on a genre different then the
training data was explored; performance worsens slightly when considering newswire data on both cue and scope detection.

Future work will focus on: (i.) further analysing the results and improving on what done so far; (ii.) tackling the problem of
automatically detecting negation in other languages. In the case of (i.), future tasks include:

• Predicting the event. We have observed that predicting the event alongside scope elements leads to some instances being
predicted as out of scope. Given that the event is always inside the scope, we will explore the possibility of first predicting
the scope and then using this prediction as input to an event classifier.

• Improving scope detection using semantic features. In the experiments here reported, we have only used word-based and
syntactic features to carry out the scope prediction task. Recent work by (Packard et al., 2014) shows that it is possible
to outperform all systems submitted for the *SEM2012 scope detection task by using a rule-based heuristics on an MRS
(Minimal Recursion Semantics) graph; we will then try to re-implement such heuristics and apply it to the GALE data in
order to investigate whether performance compares also across genres.

• Testing with different feature combination on the GALE corpus. Negation detection on the English side of the GALE
corpus has been carried out using the full set of features, under the assumption that this combination lead to the best
performance on the Conan Doyle test data. However, for completeness, it is important to perform feature ablation also on
the GALE corpus to make sure this applies also on out-of-genre documents.

• Analysing the errors in the GALE corpus. We have seen that in terms of F1 scores, performance worsens slightly when
testing on the GALE English data. We haven’t however analysed what are the reasons of this drop in the performance of
both cue and scope classification.

As for (ii.), we will proceed by:

• Building a model with language-independent features. We have seen that by using only token and POS-related features,
the performance of the system does not worsen, which is relevant if we are to train a model on the source English side and
directly transfer it onto a foreign language, following the work of (Kozhevnikov and Titov, 2013). We will experiment
with the same set of universal features: cross-lingual word clusters, unlabeled dependencies and universal POS tags.

• Performing annotation projection through word alignments. Given the availability of a manually aligned parallel corpus,
it is possible to build a baseline by projecting the annotations from English to Chinese using word alignment information
only and using the alignment of syntactic constituents as a way to improve from this baseline. This is motivated by work
previously done in semantic role labelling but also by the fact that syntactic constituents are good predictors of scope
boundaries (Read et al., 2012).
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